题文
如图,在平面直角坐标系xOy中,AB在x轴上,以AB为直径的半⊙O’与y轴正半轴交于点C,连接BC,AC.CD是半⊙O’的切线,AD⊥CD于点D.
(1)求证:∠CAD =∠CAB; (2)已知抛物线过A、B、C三点,AB=10,tan∠CAD=. ① 求抛物线的解析式; ② 判断抛物线的顶点E是否在直线CD上,并说明理由; ③ 在抛物线上是否存在一点P,使四边形PBCA是直角梯形.若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由. |
题型:解答题 难度:偏难
答案
(1)证明见解析;(2)y=-x2-x+4;顶点E是否在直线CD上,理由见解析;P1(-10,-6),P2(10,-36). |
试题分析:(1)连接O′C,由CD是⊙O的切线,可得O′C⊥CD,则可证得O′C∥AD,又由O′A=O′C,则可证得∠CAD=∠CAB; (2)①首先证得△CAO∽△BCO,根据相似三角形的对应边成比例,可得OC2=OA?OB,又由tan∠CAO=tan∠CAD=,则可求得CO,AO,BO的长,然后利用待定系数法即可求得二次函数的解析式; ②首先证得△FO′C∽△FAD,由相似三角形的对应边成比例,即可得到F的坐标,求得直线DC的解析式,然后将抛物线的顶点坐标代入检验即可求得答案; ③根据题意分别从PA∥BC与PB∥AC去分析求解即可求得答案,小心漏解. 试题解析:(1)证明:连接O′C,
∵CD是⊙O′的切线, ∴O′C⊥CD, ∵AD⊥CD, ∴O′C∥AD, ∴∠O′CA=∠CAD, ∵O′A=O′C, ∴∠CAB=∠O′CA, ∴∠CAD=∠CAB; (2)解:①∵AB是⊙O′的直径, ∴∠ACB=90°, ∵OC⊥AB, ∴∠CAB=∠OCB, ∴△CAO∽△BCO, ∴, 即OC2=OA?OB, ∵tan∠CAO=tan∠CAD=, ∴AO=2CO, 又∵AB=10, ∴OC2=2CO(10-2CO), 解得CO1=4,CO2=0(舍去), ∴CO=4,AO=8,BO=2 ∵CO>0, ∴CO=4,AO=8,BO=2, ∴A(-8,0),B(2,0),C(0,4), ∵抛物线y=ax2+bx+c过点A,B,C三点, ∴c=4, 由题意得: , 解得:, ∴抛物线的解析式为:y=-x2-x+4; ②设直线DC交x轴于点F, ∴△AOC≌△ADC, ∴AD=AO=8, ∵O′C∥AD, ∴△FO′C∽△FAD, ∴, ∴O′F?AD=O′C?AF, ∴8(BF+5)=5(BF+10), ∴BF=,F(,0); 设直线DC的解析式为y=kx+m, 则, 解得:, ∴直线DC的解析式为y=-x+4, 由y=-x2-x+4=-(x+3)2+得顶点E的坐标为(-3,), 将E(-3,)代入直线DC的解析式y=--x+4中, 右边=-×(-3)+4==左边, ∴抛物线顶点E在直线CD上; (3)存在,P1(-10,-6),P2(10,-36). ①∵A(-8,0),C(0,4), ∴过A、C两点的直线解析式为y=x+4, 设过点B且与直线AC平行的直线解析式为:y=x+b,把B(2,0)代入得b=-1, ∴直线PB的解析式为y=x-1, ∴, 解得,(舍去), ∴P1(-10,-6). ②求P2的方法应为过点A作与BC平行的直线, 可求出BC解析式,进而求出与之平行的直线的解析式, 与求P1同法,可求出x1=-8,y1=0(舍去);x2=10,y2=-36. ∴P2的坐标(10,-36). 考点: 二次函数综合题. |
据专家权威分析,试题“如图,在平面直角坐标系xOy中,AB在x轴上,以AB为直径的半⊙O’与..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|