题文
如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是( ).
|
题型:单选题 难度:中档
答案
试题分析:作AE⊥AC,DE⊥AE,两线交于E点,作DF⊥AC垂足为F点,
∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE ∴∠BAC=∠DAE 又∵AB=AD,∠ACB=∠E=90° ∴△ABC≌△ADE(AAS) ∴BC=DE,AC=AE, 设BC=a,则DE=a,DF=AE=AC=4BC=4a, CF=AC-AF=AC-DE=3a, 在Rt△CDF中,由勾股定理得, CF2+DF2=CD2,即(3a)2+(4a)2=x2, 解得:, ∴y=S四边形ABCD=S梯形ACDE=×(DE+AC)×DF =×(a+4a)×4a=10a2=. 故选C. 考点: 根据实际问题列二次函数关系式. |
据专家权威分析,试题“如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|