题文
如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明); (2)如图2,若点E在线段BC上滑动(不与点B,C重合). ①AE=EF是否总成立?请给出证明; ②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=-x2+x+1上,求此时点F的坐标. |
题型:解答题 难度:偏难
答案
(1)△AGE与△ECF全等 ①AE=EF,证明见解析 ②F(,?1) |
(1)取AB的中点G,连接EG,利用ASA能得到△AGE与△ECF全等; (2)①在AB上截取AM=EC,证得△AME≌△ECF即可证得AE=EF; ②过点F作FH⊥x轴于H,根据FH=BE=CH设BH=a,则FH=a-1,然后表示出点F的坐标,根据点F恰好落在抛物线y=-x2+x+1上得到有关a的方程求得a值即可求得点F的坐标; (1)解:如图1,取AB的中点G,连接EG.
△AGE与△ECF全等. (2)①若点E在线段BC上滑动时AE=EF总成立. 证明:如图2,在AB上截取AM=EC.
∵AB=BC, ∴BM=BE, ∴△MBE是等腰直角三角形, ∴∠AME=180°-45°=135°, 又∵CF平分正方形的外角, ∴∠ECF=135°, ∴∠AME=∠ECF. 而∠BAE+∠AEB=∠CEF+∠AEB=90°, ∴∠BAE=∠CEF, ∴△AME≌△ECF. ∴AE=EF. ②过点F作FH⊥x轴于H, 由①知,FH=BE=CH, 设BH=a,则FH=a-1, ∴点F的坐标为F(a,a-1) ∵点F恰好落在抛物线y=-x2+x+1上, ∴a-1=-a2+a+1, ∴a2=2,a=±(负值不合题意,舍去), ∴a?1=?1. ∴点F的坐标为F(,?1). |
据专家权威分析,试题“如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且E..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|