题文
答案
解:(1)=== ∴它的顶点坐标为(-1,),对称轴为直线(2)当x>-1时,y随x增大而减小(3)当y=0时,即 解得, ∴ - 4<x<2时,抛物线在x轴上方
据专家权威分析,试题“已知抛物线y=-x2-x+4(1)用配方法确定它的顶点坐标、对称轴;(2)x..”主要考查你对 二次函数的图像 等考点的理解。关于这些考点的“档案”如下:
二次函数的图像
考点名称:二次函数的图像
二次函数图像性质:轴对称:二次函数图像是轴对称图形。对称轴为直线x=-b/2a对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。a,b同号,对称轴在y轴左侧b=0,对称轴是y轴a,b异号,对称轴在y轴右侧顶点:二次函数图像有一个顶点P,坐标为P ( h,k )当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。h=-b/2a, k=(4ac-b^2)/4a。开口:二次项系数a决定二次函数图像的开口方向和大小。当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。