题文
答案
据专家权威分析,试题“已知抛物线y=x2-(k-l)x-3k-2与x轴交于A(α,0),B(β,0),且α2+β2..”主要考查你对 二次函数的图像,一元二次方程根与系数的关系 等考点的理解。关于这些考点的“档案”如下:
二次函数的图像一元二次方程根与系数的关系
考点名称:二次函数的图像
二次函数图像性质:轴对称:二次函数图像是轴对称图形。对称轴为直线x=-b/2a对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。a,b同号,对称轴在y轴左侧b=0,对称轴是y轴a,b异号,对称轴在y轴右侧顶点:二次函数图像有一个顶点P,坐标为P ( h,k )当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。h=-b/2a, k=(4ac-b^2)/4a。开口:二次项系数a决定二次函数图像的开口方向和大小。当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。
考点名称:一元二次方程根与系数的关系
一元二次方程根与系数关系的推论:1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0提示:①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0