题文
答案
据专家权威分析,试题“已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1、x2满足x1+..”主要考查你对 二次函数的图像,二次函数与一元二次方程 等考点的理解。关于这些考点的“档案”如下:
二次函数的图像二次函数与一元二次方程
考点名称:二次函数的图像
二次函数图像性质:轴对称:二次函数图像是轴对称图形。对称轴为直线x=-b/2a对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。a,b同号,对称轴在y轴左侧b=0,对称轴是y轴a,b异号,对称轴在y轴右侧顶点:二次函数图像有一个顶点P,坐标为P ( h,k )当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。h=-b/2a, k=(4ac-b^2)/4a。开口:二次项系数a决定二次函数图像的开口方向和大小。当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。
考点名称:二次函数与一元二次方程
二次函数交点与二次方程根的关系:抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方程ax2+bx+c=0的根的情况说明:1、若△>0,则一元二次方程ax2+bx+c=0有两个不等的实数根,则抛物线y=ax2+bx+c与x轴有两个交点---相交;2、若△=0,则一元二次方程ax2+bx+c=0有两个相等的实数根,则抛物线y=ax2+bx+c与x轴有唯一公共点---相切(顶点);3、若△<0,则一元二次方程ax2+bx+c=0没有实数根,则抛物线y=ax2+bx+c与x轴没有公共点--相离。若抛物线y=ax2+bx+c与轴的两个交点坐标分别是A(x1,0),B(x2,0),则x1+x2=-,x1x2=。
点拨:①解一元二次方程实质上就是求当二次函数值为0时的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。②若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2(x1<x2),则抛物线y=ax2+bx+c与x轴的交点为(x1,0),(x2,0),对称轴为x=x1+x2/2。③若a>0,当x<x1,或x>x2时,y>0;当x1<x<x2时,y<0。若a< 0,当x1<x<x2时,y>0;当x<x1或x>x2时,y<0。④如果抛物线y=ax2+bx+c与x轴交于M(x1,0),N(x2,0),则MN=√b2-4ac/|a|。