题文
如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒) (1)当t=1时,得P1、Q1两点,求过A、P1、Q1三点的抛物线解析式及对称轴l; (2)当t为何值时,PC⊥QC;此时直线PQ与⊙C是什么位置关系?请说明理由; (3)在(2)的条件下,(1)中的抛物线对称轴l上存在一点N,使得NP+NQ最小,求出点N的坐标。 |
|
题型:解答题 难度:偏难
答案
据专家权威分析,试题“如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴..”主要考查你对 求二次函数的解析式及二次函数的应用,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离) 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)
考点名称:求二次函数的解析式及二次函数的应用
考点名称:直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)