零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求二次函数的解析式及二次函数的应用 > 正文 返回 打印

如图,已知A(2,4),以A为顶点的抛物线经过原点交x轴于B。(1)求抛物线解析式。(2)取OA上一点D,以OD为直径作⊙C交x轴于E,作EF⊥AB于F,求证:EF是⊙C的切线。(3)设⊙C半径为r,E-九年级数学

[db:作者]  2019-12-17 00:00:00  互联网

题文

如图,已知A(2,4),以A为顶点的抛物线经过原点交x轴于B。
(1)求抛物线解析式。
(2)取OA上一点D,以OD为直径作⊙C交x轴于E,作 EF⊥AB于F,求证:EF是⊙C 的切线。
(3)设⊙C 半径为r,EF=m,求m与r的函数关系式及自变量r的取值范围。
(4)当⊙C与AB相切时,求⊙C半径r的值。

题型:解答题  难度:偏难

答案

(1)
(2)连CE 可证CE∥AB,
   又EF⊥AB,可知CE⊥EF,
  ∴EF是⊙O的切线
(3)分别过C、A作OB的垂线,垂足分别为G、H,
   OG=,OE=2OG=,EB=4-
   ∴
(4)设⊙C切AB于点G 连结CG,
   则CG⊥AB
  ∴∠CGF=∠EFG=∠CEF=90°
   ∴四边形CEFG为矩形又CE=CG
   ∴四边形CEFG为正方形
   ∴EF=r
  ∴
  由(3)得r=
   解得

据专家权威分析,试题“如图,已知A(2,4),以A为顶点的抛物线经过原点交x轴于B。(1)求抛..”主要考查你对  求二次函数的解析式及二次函数的应用,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

    由一般式变为交点式的步骤:
    二次函数
    ∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
    ∴y=ax2+bx+c
    =a(x2+b/ax+c/a)
    =a[x2-(x1+x2)x+x1?x2]
    =a(x-x1)(x-x2).
    重要概念:
    a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;
    a<0时,开口方向向下。a的绝对值可以决定开口大小。
    a的绝对值越大开口就越小,a的绝对值越小开口就越大。
    能灵活运用这三种方式求二次函数的解析式;
    能熟练地运用二次函数在几何领域中的应用;
    能熟练地运用二次函数解决实际问题。

  • 二次函数的其他表达形式:
    ①牛顿插值公式:
    f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 
    二次函数表达式的右边通常为二次三项式。

    双根式
    y=a(x-x1)*(x-x2)
    若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。

    ③三点式
    已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))
    则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)
    与X轴交点的情况
    当△=b2-4ac>0时,函数图像与x轴有两个交点。(x1,0), (x2,0);
    当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。
    Δ=b2-4ac<0时,抛物线与x轴没有交点。
    X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  • 二次函数解释式的求法:
    就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。

    1.巧取交点式法:
    知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。
    已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。
    ①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。
    例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。
    点拨:
    解设函数的解析式为y=a(x+2)(x-1),
    ∵过点(2,8),
    ∴8=a(2+2)(2-1)。
    解得a=2,
    ∴抛物线的解析式为:
    y=2(x+2)(x-1),
    即y=2x2+2x-4。

    ②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。
    例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。
    点拨:
    在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。

    2.巧用顶点式:
    顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.
    ①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。
    例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。
    点拨:
    解∵顶点坐标为(-1,-2),
    故设二次函数解析式为y=a(x+1)2-2 (a≠0)。
    把点(1,10)代入上式,得10=a·(1+1)2-2。
    ∴a=3。
    ∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。

    ②典型例题二:
    如果a>0,那么当 时,y有最小值且y最小=
    如果a<0,那么,当时,y有最大值,且y最大=
    告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。
    例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。
    点拨:
    析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。
    由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。
    ∴抛物线的顶点为(4,-3)且过点(1,0)。
    故可设函数解析式为y=a(x-4)2-3。
    将(1,0)代入得0=a(1-4)2-3, 解得a=13.
    ∴y=13(x-4)2-3,即y=13x2-83x+73。
    ③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。
    例如:
    (1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式.
    (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式.
    (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式.
    (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.

    ④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。
    例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。
    点拨:
    解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。
    ∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,
    ∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。

考点名称:直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)

  • 直线与圆的位置关系:
    直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。
    (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d<r;
    (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。
    (3)相离:直线和圆没有公共点时,叫做直线和圆相离,AB与圆O相离,d>r。(d为圆心到直线的距离)

  • 直线与圆的三种位置关系的判定与性质:
    (1)数量法:通过比较圆心O到直线距离d与圆半径的大小关系来判定,
    如果⊙O的半径为r,圆心O到直线l的距离为d,则有:
    直线l与⊙O相交d<r;
    直线l与⊙O相切d=r;
    直线l与⊙O相离d>r;
    (2)公共点法:通过确定直线与圆的公共点个数来判定。
    直线l与⊙O相交d<r2个公共点;
    直线l与⊙O相切d=r有唯一公共点;
    直线l与⊙O相离d>r无公共点 。

    圆的切线的判定和性质   
    (1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
    (2)切线的性质定理:圆的切线垂直于经过切点的半径。

    切线长:
    在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
    切线长定理:
    从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

  • 直线与圆的位置关系判定方法:
    平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是:
    1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x2+y2+Dx+Ey+F=0,即成为一个关于x的方程
    如果b2-4ac>0,则圆与直线有2交点,即圆与直线相交。
    如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。
    如果b2-4ac<0,则圆与直线有0交点,即圆与直线相离。

    2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x2+y2+Dx+Ey+F=0化为(x-a)2+(y-b)2=r2
    令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么: 
    当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;
    当x1<x=-C/A<x2时,直线与圆相交。 



http://www.00-edu.com/ks/shuxue/2/120/2019-12-18/1874996.html十二生肖
十二星座