题文
已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线y=-x2+mx+n经过点A和点C,动点P在x轴上以每秒1个单位长度的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍。 (1)求直线和抛物线的解析式; (2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,△PQA是直角三角形; (3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由。 |
题型:解答题 难度:偏难
答案
据专家权威分析,试题“已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线y=-x2+..”主要考查你对 求二次函数的解析式及二次函数的应用,求一次函数的解析式及一次函数的应用,直角三角形的性质及判定,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用求一次函数的解析式及一次函数的应用直角三角形的性质及判定相似三角形的性质
考点名称:求二次函数的解析式及二次函数的应用 考点名称:求一次函数的解析式及一次函数的应用 考点名称:直角三角形的性质及判定 考点名称:相似三角形的性质
|