题文
如图,已知抛物线y=-x2+bx+9-b2(b为常数)经过坐标原点O,且与x轴交于另一点E,其顶点M在第一象限。 (1)求该抛物线所对应的函数关系式; (2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作AB⊥x轴于点B,DE⊥x轴于点C。 ①当线段AB、BC的长都是整数个单位长度时,求矩形ABCD的周长; ②求矩形ABCD的周长的最大值,并写出此时点A的坐标; ③当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断井说明理由。 |
|
题型:解答题 难度:偏难
答案
解:(1)由题意代入原点到二次函数式 则9-b2=0,解得b=±3, 由题意抛物线的对称轴大于0,, 所以b=3, 所以解析式为y=-x2+3x; (2)根据两个三角形相似的条件,由于在△ECD中,∠ECD=60°, 若△BCP与△ECD相似,则△BCP中必有一个角为60°, 下面进行分类讨论: ①当P点直线CB的上方时,由于△PCB中,∠CBP>90°或∠BCP>90°, ∴△PCB为钝角三角形, 又∵△ECD为锐角三角形, ∴△ECD与△CPB不相似, 从而知在直线CB上方的抛物线上不存在点P使△CPB与△ECD相似; ②当P点在直线CB上时,点P与C点或B点重合,不能构成三角形, ∴在直线CB上不存在满足条件的P点; ③当P点在直线CB的下方时,若∠BCP=60°,则P点与E1点重合, 此时,∠ECD=∠BCE1, 而, ∴, ∴△BCE与△ECD不相似, 若∠CBP=60°,则P点与A点重合, 根据抛物线的对称性,同理可证△BCA与△CED不相似, 若∠CPB=60°,假设抛物线上存在点P使△CPB与△ECD相似, ∴EF=sin60°×4=,FD=1, ∴ED=, ∴当矩形ABCD的周长取得最大值时,它的面积能同时取得最大值。 |
据专家权威分析,试题“如图,已知抛物线y=-x2+bx+9-b2(b为常数)经过坐标原点O,且与x轴..”主要考查你对 求二次函数的解析式及二次函数的应用,二次函数的图像,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用二次函数的图像相似三角形的性质
考点名称:求二次函数的解析式及二次函数的应用 考点名称:二次函数的图像 考点名称:相似三角形的性质
|