题文
在等腰△ABC中,AB=AC=5,BC=6,动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC,将△AMN沿MN所在的直线折叠,使点A的对应点为P。 (1)当MN为何值时,点P恰好落在BC上? (2)当MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式,当x为何值时,y的值最大,最大值是多少? |
|
题型:解答题 难度:偏难
答案
解:(1)连接AP,交MN于O, ∵将△AMN沿MN所在的直线折叠,使点A的对应点为P, ∴OA=OP,AP⊥MN,AN=PN,AM=PM, ∵MN∥BC, ∴△AMN∽△ABC,AO⊥MN, ∴, ∵BC=6, ∴MN=3, ∴当MN=3时,点P恰好落在BC上; |
|
(2)过点A作AD⊥BC于D,交MN于O, ∵MN∥BC, ∴AO⊥MN, ∴△AMN∽△ABC, ∴, ∵AB=AC=5,BC=6,AD⊥BC, ∴∠ADB=90°,BD=BC=3, ∴AD=4, ∴, ∴AO=x, ∴S△AMN=, 当AO≤AD时, 根据题意得:S△PMN=S△AMN, ∴△MNP与等腰△ABC重叠部分的面积为S△AMN, ∴, ∴当AO=AD时,即MN=BC=3时,y最小,最小值为3; 当AO>AD时, 连接AP交MN于O,则AO⊥MN, ∵MN∥BC, ∴AP⊥BC,△AMN∽△ABC,△PEF∽△PMN∽△AMN, ∴, 即:, ∴AO=x, ∴, ∴EF=2x-6,OD=AD-AO=4-x, ∴y=S梯形MNFE=(EF+MN)·OD=×(2x-6+x)×(4x)=-(x-4)2+4, ∴当x=4时,y有最大值,最大值为4, 综上所述:当x=4时,y的值最大,最大值是4。 |
|
据专家权威分析,试题“在等腰△ABC中,AB=AC=5,BC=6,动点M、N分别在两腰AB、AC上(M不与..”主要考查你对 求二次函数的解析式及二次函数的应用,等腰三角形的性质,等腰三角形的判定,轴对称,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用等腰三角形的性质,等腰三角形的判定轴对称相似三角形的性质
考点名称:求二次函数的解析式及二次函数的应用 考点名称:等腰三角形的性质,等腰三角形的判定 考点名称:轴对称 考点名称:相似三角形的性质
|