题文
如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的圆交x轴于E,D两点(D点在E点右方)。 |
|
(1)求点E,D 的坐标; (2)求过B,C,D三点的抛物线的函数关系式; (3)过B,C,D三点的抛物线上是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标。 |
题型:解答题 难度:偏难
答案
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
<style>
/* Generator: eWebEditor */
p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}
div.Section1 {page:Section1;}
</style>
解:(1)在BC上取中点G,并过G作GH⊥x轴于H,连接GD ∵, ∴ ∴H(2,0) ∵,GH=2-0=2 又DG=BG= ∴ ∴D(3,0),E(1,0)。 |
(2)设过B、C、D三点的抛物线表达式为 则 解得 ∴。 (3)设Q,由(2)可得Q 过Q作QN⊥x轴于N 分2种情况: ①当∠BDQ=90°时, ∴∠NDQ+∠BDA=90° ∵∠DNQ=∠BAD=90° ∴∠NDQ+∠NQD=90° ∴∠NQD=∠BDA ∴△NDQ∽△ABD ∴ 即 解得 当时, 当 (与点D重合,舍去)。 ②当∠DBQ=90时,则当有 ∵B(4,1),D(3,0),Q ∴ +2= 整理得:,解得:, ∴当,由y3=1(此时,Q点与B点重合,舍去) 当x4=-1时,y4=6 ∴,(与点B重合,舍去), 综上所述符合条件的点有2个,分别是,。 |
据专家权威分析,试题“如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的圆..”主要考查你对 求二次函数的解析式及二次函数的应用,一元二次方程的解法,勾股定理,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用一元二次方程的解法勾股定理相似三角形的性质
考点名称:求二次函数的解析式及二次函数的应用
考点名称:一元二次方程的解法
考点名称:勾股定理
考点名称:相似三角形的性质