零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求二次函数的解析式及二次函数的应用 > 正文 返回 打印

在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等边三角形DEF从初始位置(点E与点B重合,EF落在BC上,如图1所示)在线段BC上沿BC方向以每秒1个单位的速度平移,DE、DF分别与AB相交于点M、-九年级数学

[db:作者]  2019-12-17 00:00:00  零零社区

题文

在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等边三角形DEF从初始位置(点E与点B重合,EF落在BC上,如图1所示)在线段BC上沿BC方向以每秒1个单位的速度平移,DE、DF分别与AB相交于点M、N,当点F运动到点C时,△DEF终止运动,此时点D恰好落在AB上,设△DEF平移的时间为x。
(1)求△DEF的边长;
(2)求M点、N点在BA上的移动速度;
(3)在△DEF开始运动的同时,如果点P以每秒2个单位的速度从D点出发沿DE·EF运动,最终运动到F点.若设△PMN的面积为y,求y与x的函数关系式,写出它的定义域;并说明当P点在何处时,△PMN的面积最大?
题型:解答题  难度:偏难

答案

解:(1)当F点与C点重合时,如图1所示:
∵△DEF为等边三角形,
∴∠DFE=60°,
∵∠B=30°,
∴∠BDF=90°,
∴FD=BC=3;
(2)过E点作EG⊥AB,
∵∠DEF=60°,∠B=30°,
∴∠BME=30°,
∴EB=EM,
在Rt△EBG中,BG=x×cos30°=x,
∴BM=2BG=x,
∴M点在BA上的移动速度为,F点作FH⊥F1D1
在Rt△FF1H中,FH=x×cos30°=x,
点N在BA上的移动速度为
(3)在Rt△DMN中,DM=3-x,MN=(3-x)×cos30°=(3-x),
当P点运动到M点时,有2x+x=3,
∴x=1
①当P点在DM之间运动时,过P点作PP1⊥AB,垂足为P1在Rt△PMP1中,PM=3-x-2x=3-3x,
∴PP1=(3-3x)=(1-x),
∴y与x的函数关系式为:
(0≤x≤1),
②当P点在ME之间运动时,过P点作PP2⊥AB,垂足为P2
在Rt△PMP2中,PM=x-(3-2x)=3(x-1),
∴PP2=(1-x),
∴y与x的函数关系式为:

③当P点在EF之间运动时,过P点作PP3⊥AB,垂足为P3
在Rt△PMP3中,PB=x+(2x-3)=3(x-1),
∴PP3=(x-1),
∴y与x的函数关系式为:


∴当x=2时,y最大=,而当P点在D点时,


∴当P点在D点时,△PMN的面积最大。


据专家权威分析,试题“在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等边三角形DEF从初始位置(点..”主要考查你对  求二次函数的解析式及二次函数的应用,等边三角形,解直角三角形  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用等边三角形解直角三角形

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

    由一般式变为交点式的步骤:
    二次函数
    ∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
    ∴y=ax2+bx+c
    =a(x2+b/ax+c/a)
    =a[x2-(x1+x2)x+x1?x2]
    =a(x-x1)(x-x2).
    重要概念:
    a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;
    a<0时,开口方向向下。a的绝对值可以决定开口大小。
    a的绝对值越大开口就越小,a的绝对值越小开口就越大。
    能灵活运用这三种方式求二次函数的解析式;
    能熟练地运用二次函数在几何领域中的应用;
    能熟练地运用二次函数解决实际问题。

  • 二次函数的其他表达形式:
    ①牛顿插值公式:
    f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 
    二次函数表达式的右边通常为二次三项式。

    双根式
    y=a(x-x1)*(x-x2)
    若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。

    ③三点式
    已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))
    则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)
    与X轴交点的情况
    当△=b2-4ac>0时,函数图像与x轴有两个交点。(x1,0), (x2,0);
    当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。
    Δ=b2-4ac<0时,抛物线与x轴没有交点。
    X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  • 二次函数解释式的求法:
    就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。

    1.巧取交点式法:
    知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。
    已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。
    ①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。
    例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。
    点拨:
    解设函数的解析式为y=a(x+2)(x-1),
    ∵过点(2,8),
    ∴8=a(2+2)(2-1)。
    解得a=2,
    ∴抛物线的解析式为:
    y=2(x+2)(x-1),
    即y=2x2+2x-4。

    ②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。
    例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。
    点拨:
    在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。

    2.巧用顶点式:
    顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.
    ①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。
    例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。
    点拨:
    解∵顶点坐标为(-1,-2),
    故设二次函数解析式为y=a(x+1)2-2 (a≠0)。
    把点(1,10)代入上式,得10=a·(1+1)2-2。
    ∴a=3。
    ∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。

    ②典型例题二:
    如果a>0,那么当 时,y有最小值且y最小=
    如果a<0,那么,当时,y有最大值,且y最大=
    告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。
    例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。
    点拨:
    析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。
    由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。
    ∴抛物线的顶点为(4,-3)且过点(1,0)。
    故可设函数解析式为y=a(x-4)2-3。
    将(1,0)代入得0=a(1-4)2-3, 解得a=13.
    ∴y=13(x-4)2-3,即y=13x2-83x+73。
    ③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。
    例如:
    (1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式.
    (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式.
    (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式.
    (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.

    ④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。
    例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。
    点拨:
    解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。
    ∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,
    ∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。

考点名称:等边三角形

  • 等边三角形定义:
    三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
    如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
    1.三边长度相等;
    2.三个内角度数均为60度;
    3.一个内角为60度的等腰三角形。

  • 性质:
    ①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
    ②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
    ③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
    ④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
    ⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

  • 判定方法:
    ①三边相等的三角形是等边三角形(定义)
    ②三个内角都相等(为60度)的三角形是等边三角形
    ③有一个角是60度的等腰三角形是等边三角形
    ④ 两个内角为60度的三角形是等边三角形
    说明:可首先考虑判断三角形是等腰三角形。

    等边三角形的性质与判定理解:
    首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
    其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

    等比三角形的尺规做法:
    可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

考点名称:解直角三角形

  • 概念:
    在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形。

    解直角三角形的边角关系:
    在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,
    (1)三边之间的关系:(勾股定理);
    (2)锐角之间的关系:∠A+∠B=90°;
    (3)边角之间的关系:

  • 解直角三角形的函数值:

    锐角三角函数:
    sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a
    (1)互余角的三角函数值之间的关系:
    若∠ A+∠ B=90°,那么sinA=cosB或sinB=cosA
    (2)同角的三角函数值之间的关系:
    ①sin2A+cos2A=1
    ②tanA=sinA/cosA
    ③tanA=1/tanB
    ④a/sinA=b/sinB=c/sinC
    (3)锐角三角函数随角度的变化规律:
    锐角∠A的tan值和sin值随着角度的增大而增大,cos值随着角度的增大而减小。

  • 解直角三角形的应用:
    一般步骤是:
    (1)将实际问题抽象为数学问题(画图,转化为直角三角形的问题);
    (2)根据题目的条件,适当选择锐角三角函数等去解三角形;
    (3)得到数学问题的答案;
    (4)还原为实际问题的答案。

  • 解直角三角形的函数值列举:
    sin1=0.01745240643728351 sin2=0.03489949670250097 sin3=0.05233595624294383
    sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346
    sin7=0.12186934340514747 sin8=0.13917310096006544 sin9=0.15643446504023087
    sin10=0.17364817766693033 sin11=0.1908089953765448 sin12=0.20791169081775931
    sin13=0.22495105434386497 sin14=0.24192189559966773 sin15=0.25881904510252074
    sin16=0.27563735581699916 sin17=0.2923717047227367 sin18=0.3090169943749474
    sin19=0.3255681544571567 sin20=0.3420201433256687 sin21=0.35836794954530027
    sin22=0.374606593415912 sin23=0.3907311284892737 sin24=0.40673664307580015
    sin25=0.42261826174069944 sin26=0.4383711467890774 sin27=0.45399049973954675
    sin28=0.4694715627858908 sin29=0.48480962024633706 sin30=0.49999999999999994
    sin31=0.5150380749100542 sin32=0.5299192642332049 sin33=0.544639035015027
    sin34=0.5591929034707468 sin35=0.573576436351046 sin36=0.5877852522924731
    sin37=0.6018150231520483 sin38=0.6156614753256583 sin39=0.6293203910498375
    sin40=0.6427876096865392 sin41=0.6560590289905073 sin42=0.6691306063588582
    sin43=0.6819983600624985 sin44=0.6946583704589972 sin45=0.7071067811865475
    sin46=0.7193398003386511 sin47=0.7313537016191705 sin48=0.7431448254773941
    sin49=0.7547095802227719 sin50=0.766044443118978 sin51=0.7771459614569708
    sin52=0.7880107536067219 sin53=0.7986355100472928 sin54=0.8090169943749474
    sin55=0.8191520442889918 sin56=0.8290375725550417 sin57=0.8386705679454239
    sin58=0.848048096156426 sin59=0.8571673007021122 sin60=0.8660254037844386
    sin61=0.8746197071393957 sin62=0.8829475928589269 sin63=0.8910065241883678
    sin64=0.898794046299167 sin65=0.9063077870366499 sin66=0.9135454576426009
    sin67=0.9205048534524404 sin68=0.9271838545667873 sin69=0.9335804264972017
    sin70=0.9396926207859083 sin71=0.9455185755993167 sin72=0.9510565162951535
    sin73=0.9563047559630354 sin74=0.9612616959383189 sin75=0.9659258262890683
    sin76=0.9702957262759965 sin77=0.9743700647852352 sin78=0.9781476007338057
    sin79=0.981627183447664 sin80=0.984807753012208 sin81=0.9876883405951378
    sin82=0.9902680687415704 sin83=0.992546151641322 sin84=0.9945218953682733
    sin85=0.9961946980917455 sin86=0.9975640502598242 sin87=0.9986295347545738
    sin88=0.9993908270190958 sin89=0.9998476951563913
    sin90=1

    cos1=0.9998476951563913 cos2=0.9993908270190958 cos3=0.9986295347545738
    cos4=0.9975640502598242 cos5=0.9961946980917455 cos6=0.9945218953682733
    cos7=0.992546151641322 cos8=0.9902680687415704 cos9=0.9876883405951378
    cos10=0.984807753012208 cos11=0.981627183447664 cos12=0.9781476007338057
    cos13=0.9743700647852352 cos14=0.9702957262759965 cos15=0.9659258262890683
    cos16=0.9612616959383189 cos17=0.9563047559630355 cos18=0.9510565162951535
    cos19=0.9455185755993168 cos20=0.9396926207859084 cos21=0.9335804264972017
    cos22=0.9271838545667874 cos23=0.9205048534524404 cos24=0.9135454576426009
    cos25=0.9063077870366499 cos26=0.898794046299167 cos27=0.8910065241883679
    cos28=0.882947592858927 cos29=0.8746197071393957 cos30=0.8660254037844387
    cos31=0.8571673007021123 cos32=0.848048096156426 cos33=0.838670567945424
    cos34=0.8290375725550417 cos35=0.8191520442889918 cos36=0.8090169943749474
    cos37=0.7986355100472928 cos38=0.7880107536067219 cos39=0.7771459614569709
    cos40=0.766044443118978 cos41=0.754709580222772 cos42=0.7431448254773942
    cos43=0.7313537016191705 cos44=0.7193398003386512 cos45=0.7071067811865476
    cos46=0.6946583704589974 cos47=0.6819983600624985 cos48=0.6691306063588582
    cos49=0.6560590289905074 cos50=0.6427876096865394 cos51=0.6293203910498375
    cos52=0.6156614753256583 cos53=0.6018150231520484 cos54=0.5877852522924731
    cos55=0.5735764363510462 cos56=0.5591929034707468 cos57=0.5446390350150272
    cos58=0.5299192642332049 cos59=0.5150380749100544 cos60=0.5000000000000001
    cos61=0.4848096202463371 cos62=0.46947156278589086 cos63=0.4539904997395468
    cos64=0.43837114678907746 cos65=0.42261826174069944 cos66=0.4067366430758004
    cos67=0.3907311284892737 cos68=0.3746065934159122 cos69=0.35836794954530015
    cos70=0.3420201433256688 cos71=0.32556815445715675 cos72=0.30901699437494745
    cos73=0.29237170472273677 cos74=0.27563735581699916 cos75=0.25881904510252074
    cos76=0.24192189559966767 cos77=0.22495105434386514 cos78=0.20791169081775923
    cos79=0.19080899537654491 cos80=0.17364817766693041 cos81=0.15643446504023092
    cos82=0.13917310096006546 cos83=0.12186934340514749 cos84=0.10452846326765346
    cos85=0.08715574274765836 cos86=0.06975647374412523 cos87=0.052335956242943966
    cos88=0.03489949670250108 cos89=0.0174524064372836
    cos90=0

    tan1=0.017455064928217585 tan2=0.03492076949174773 tan3=0.052407779283041196
    tan4=0.06992681194351041 tan5=0.08748866352592401 tan6=0.10510423526567646
    tan7=0.1227845609029046 tan8=0.14054083470239145 tan9=0.15838444032453627
    tan10=0.17632698070846497 tan11=0.19438030913771848 tan12=0.2125565616700221
    tan13=0.2308681911255631 tan14=0.24932800284318068 tan15=0.2679491924311227
    tan16=0.2867453857588079 tan17=0.30573068145866033 tan18=0.3249196962329063
    tan19=0.34432761328966527 tan20=0.36397023426620234 tan21=0.3838640350354158
    tan22=0.4040262258351568 tan23=0.4244748162096047 tan24=0.4452286853085361
    tan25=0.4663076581549986 tan26=0.4877325885658614 tan27=0.5095254494944288
    tan28=0.5317094316614788 tan29=0.554309051452769 tan30=0.5773502691896257
    tan31=0.6008606190275604 tan32=0.6248693519093275 tan33=0.6494075931975104
    tan34=0.6745085168424265 tan35=0.7002075382097097 tan36=0.7265425280053609
    tan37=0.7535540501027942 tan38=0.7812856265067174 tan39=0.8097840331950072
    tan40=0.8390996311772799 tan41=0.8692867378162267 tan42=0.9004040442978399
    tan43=0.9325150861376618 tan44=0.9656887748070739 tan45=0.9999999999999999
    tan46=1.0355303137905693 tan47=1.0723687100246826 tan48=1.1106125148291927
    tan49=1.1503684072210092 tan50=1.19175359259421 tan51=1.234897156535051
    tan52=1.2799416321930785 tan53=1.3270448216204098 tan54=1.3763819204711733
    tan55=1.4281480067421144 tan56=1.4825609685127403 tan57=1.5398649638145827
    tan58=1.6003345290410506 tan59=1.6642794823505173 tan60=1.7320508075688767
    tan61=1.8040477552714235 tan62=1.8807264653463318 tan63=1.9626105055051503
    tan64=2.050303841579296 tan65=2.1445069205095586 tan66=2.246036773904215
    tan67=2.355852365823753 tan68=2.4750868534162946 tan69=2.6050890646938023
    tan70=2.7474774194546216 tan71=2.904210877675822 tan72=3.0776835371752526
    tan73=3.2708526184841404 tan74=3.4874144438409087 tan75=3.7320508075688776
    tan76=4.0107809335358455 tan77=4.331475874284153 tan78=4.704630109478456
    tan79=5.144554015970307 tan80=5.671281819617707 tan81=6.313751514675041
    tan82=7.115369722384207 tan83=8.144346427974593 tan84=9.514364454222587
    tan85=11.43005230276132 tan86=14.300666256711942 tan87=19.08113668772816
    tan88=28.636253282915515 tan89=57.289961630759144
    tan90=(无限)



http://www.00-edu.com/ks/shuxue/2/120/2019-12-18/1877403.html十二生肖
十二星座