零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 二次函数与一元二次方程 > 正文 返回 打印

已知抛物线y=mx2-(3m+43)x+4与x轴交于两点A、B,与y轴交于C点,若△ABC是等腰三角形,求抛物线的解析式.-数学

[db:作者]  2019-12-17 00:00:00  互联网

题文

已知抛物线y=mx2-(3m+
4
3
)x+4与x轴交于两点A、B,与y轴交于C点,若△ABC是等腰三角形,求抛物线的解析式.
题型:解答题  难度:中档

答案

y=mx2-(3m+
4
3
)x+4=(mx-
4
3
)(x-3),
设y=0,则x1=
4
3m
,x2=3,
∴A(
4
3m
,0),B(3,0),
设x=0,则y=4,
∴C(0,4),
①若AC=BC
因为CO垂直BC,所以他也是底边中线
所以 AO=BO=3
A(-3,0)
4
3m
=-3
∴m=-
4
9

②若BC=AB
由勾股定理得:BC=5,
∴AB=|3-
4
3m
|=5
∴m=-
2
3
,m=
1
6

③若AC=AB
则AC=

AO2+OC2

∴AB=|3-
4
3m
|=

AO2+OC2

∴m=-
8
7

∴m=-
4
9
,-
2
3
1
2
,-
8
7

∴y=-
4
9
x2+4或y=-
2
3
x2+
2
3
x+4或y=
1
2
x2-
6
17
x+4或y=-
8
7
x2-
44
21
x+4.

据专家权威分析,试题“已知抛物线y=mx2-(3m+43)x+4与x轴交于两点A、B,与y轴交于C点,若..”主要考查你对  二次函数与一元二次方程  等考点的理解。关于这些考点的“档案”如下:

二次函数与一元二次方程

考点名称:二次函数与一元二次方程

  • 二次函数与一元二次方程的关系:
    函数y=ax2+bx+c(a≠0),当y=0时,得到一元二次方程ax2+bx+c=0(a≠0)。
    那么一元二次方程的解就是二次函数图像与x轴焦点的横坐标,因此,二次函数图像与x轴的交点情况决定一元二次方程根的情况。
    1、从形式上看:
    二次函数:y=ax2+bx+c  (a≠0)
    一元二次方程:ax2+bx+c=0  (a≠0)
    2、从内容上看:
    二次函数表示的是一对(x,y)之间的关系,它有无数对解;一元二次方程表示的是未知数x的值,最多只有2个值
    3、相互关系:
    二次函数与x轴交点的横坐标就是相应的一元二次方程的根。
    如:y=x2-4x+3与x轴的交点是(1,0)、(3,0),则一元二次方程x2-4x+3=0的根是x=1或x=3

  • 二次函数交点与二次方程根的关系:
    抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方程ax2+bx+c=0的根的情况说明:
    1、若△>0,则一元二次方程ax2+bx+c=0有两个不等的实数根,则抛物线y=ax2+bx+c与x轴有两个交点---相交;
    2、若△=0,则一元二次方程ax2+bx+c=0有两个相等的实数根,则抛物线y=ax2+bx+c与x轴有唯一公共点---相切(顶点);
    3、若△<0,则一元二次方程ax2+bx+c=0没有实数根,则抛物线y=ax2+bx+c与x轴没有公共点--相离。
    若抛物线y=ax2+bx+c与轴的两个交点坐标分别是A(x1,0),B(x2,0),则x1+x2=-,x1x2=

  • 点拨:
    ①解一元二次方程实质上就是求当二次函数值为0时的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。
    ②若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2(x1<x2),则抛物线y=ax2+bx+c与x轴的交点为(x1,0),(x2,0),对称轴为x=x1+x2/2。
    ③若a>0,当x<x1,或x>x2时,y>0;当x1<x<x2时,y<0。
    若a< 0,当x1<x<x2时,y>0;当x<x1或x>x2时,y<0。
    ④如果抛物线y=ax2+bx+c与x轴交于M(x1,0),N(x2,0),则MN=√b2-4ac/|a|。



http://www.00-edu.com/ks/shuxue/2/121/2019-12-17/1870139.html十二生肖
十二星座