零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 直方图 > 正文 返回 打印

图1是某市2007年2月5日至14日每天最低气温的折线统计图。(1)图2是该市2007年2月5日至14日每天最高气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;(2)在-九年级数学

[db:作者]  2019-12-17 00:00:00  互联网

题文

图1是某市2007年2月5日至14日每天最低气温的折线统计图。

(1)图2是该市2007年2月5日至14日每天最高气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;
(2)在这10天中,最低气温的众数是_______,中位数是_______,方差是______。
题型:解答题  难度:中档

答案

解:(1)作图“略”;
(2)7℃;7.5℃;2.49(℃)。

据专家权威分析,试题“图1是某市2007年2月5日至14日每天最低气温的折线统计图。(1)图2是..”主要考查你对  直方图,中位数和众数,方差  等考点的理解。关于这些考点的“档案”如下:

直方图中位数和众数方差

考点名称:直方图

  • 频数分布直方图的定义:
    在统计数据时,按照频数分布表,在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高代表对应的频数,称这样的统计图为频数分布直方图。
    相关概念:
    组数:在统计数据时,我们把数据按照不同的范围分成几个组,分成的组的个数称为组数。
    组距:每一组两个端点的差。

  • 频数分布直方图的特点:
    ①能够显示各组频数分布的情况;
    ②易于显示各组之间频数的差别。

    作直方图的目的有:
    作直方图的目的就是通过观察图的形状,判断生产过程是否稳定,预测生产过程的质量。
    1判断一批已加工完毕的产品;
    搜集有关数据。
    直方图将数据根据差异进行分类,特点是明察秋毫地掌握差异。
    2在公路工程质量管理中,作直方图的目的有:
    ①估算可能出现的不合格率;
    ②考察工序能力估算法
    ③判断质量分布状态;
    ④判断施工能力;

  • 直方图绘制注意事项:
    a. 抽取的样本数量过小,将会产生较大误差,可信度低,也就失去了统计的意义。因此,样本数不应少于50个。
    b. 组数 k 选用不当,k 偏大或偏小,都会造成对分布状态的判断有误。
    c. 直方图一般适用于计量值数据,但在某些情况下也适用于计数值数据,这要看绘制直方图的目的而定。
    d. 图形不完整,标注不齐全,直方图上应标注:公差范围线、平均值 的位置(点画线表示)不能与公差中心M相混淆;图的右上角标出:N、S、C p或 CPK.

  • 制作频数分布直方图的方法:
    ①集中和记录数据,求出其最大值和最小值。数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。 我们把分成组的个数称为组数,每一个组的两个端点的差称为组距。
    ②将数据分成若干组,并做好记号。分组的数量在5-12之间较为适宜。
    ③计算组距的宽度。用最大值和最小值之差去除组数,求出组距的宽度。
    ④计算各组的界限位。各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去最小测定单位的一半,第一组的上界为其下界值加上组距。第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。
    ⑤统计各组数据出现频数,作频数分布表。
    ⑥作直方图。以组距为底长,以频数为高,作各组的矩形图。

    应用步骤:
    (1)收集数据。作直方图的数据一般应大于50个。
    (2)确定数据的极差(R)。用数据的最大值减去最小值 求得。
    (3)确定组距(h)。先确定直方图的组数,然后以此组数去除极差,可得直方图每组的宽度,即组距。组数的确定要适当。组数太少,会引起较大计算误差;组数太多,会影响数据分组规律的明显性,且计算工作量加大。
    (4)确定各组的界限值。为避免出现数据值与组界限值重合而造成频数据计算困难,组的界限值单位应取最小测量单位的1/2。分组时应把数据表中最大值和最小值包括在内。
    第一组下限值为:最小值-0.5;
    第一组上限值为:第一组下限值加组距;
    第二组下限值就是第一组的上限值;
    第二组上限值就是第二组的下限值加组距;
    第三组以后,依此类推定出各组的组界。
    (5)编制频数分布表。把多个组上下界限值分别填入频数分布表内,并把数据表中的各个数据列入相应的组,统计各组频数据(f )。
    (6)按数据值比例画出横坐标。
    (7)按频数值比例画纵坐标。以观测值数目或百分数表示。
    (8)画直方图。按纵坐标画出每个长方形的高度,它代表取落在此长方形中的数据数。(注意:每个长方形的宽度都是相等的。)在直方图上应标注出公差范围(T)、样本容量(n)、样本平均值(x)、样本标准偏差值(s)和x的位置等。

考点名称:中位数和众数

  • 中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间位置的两个数据的平均数)叫这组数据的中位数。
    众数:在一组数据中,出现次数最多的数据。

  • 中位数的位置:
    当样本数为奇数时,中位数=(N+1)/2;当样本数为偶数时,中位数为N/2与1+N/2的均值

    众数性质:
    用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便。在一组数据中,如果个别数据有很大的变动,选择中位数表示这组数据的“集中趋势”就比较适合。
    当数值或被观察者没有明显次序(常发生于非数值性资料)时特别有用,由于可能无法良好定义算术平均数和中位数。例子:{鸡、鸭、鱼、鱼、鸡、鱼}的众数是鱼。
    众数算出来是销售最常用的,代表最多的 
    众数是在一组数据中,出现次数最多的数据 
    两组数据中,都是1,2出现次数最多 
    所以1,2是众数 
    众数:
    一般来说,一组数据中,出现次数最多的数就叫这组数据的众数。
    例如:1,2,3,3,4的众数是3。 
    但是,如果有两个或两个以上个数出现次数都是最多的,那么这几个数都是这组数据的众数。
    例如:1,2,2,3,3,4的众数是2和3。
    还有,如果所有数据出现的次数都一样,那么这组数据没有众数。
    例如:1,2,3,4,5没有众数。
    在高斯分布中,众数位于峰值。

    平均数、中位数和众数的特征:

    (1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。
    (2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
    (3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。 中位数算出来可避免极端数据,代表着数据总体的中等情况。
    (4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

  • 平均数、中位数和众数异同:
    一、相同点
    平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。

    二、不同点
    它们之间的区别,主要表现在以下方面。
    1、定义不同
    平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
    中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。
    众数:在一组数据中出现次数最多的数叫做这组数据的众数。

    2、求法不同
    平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
    中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。
    众数:一组数据中出现次数最多的那个数,不必计算就可求出。

    3、个数不同
    在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。

    4、呈现不同
    平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
    中位数:是一个不完全“虚拟”的数。当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
    众  数:是一组数据中的原数据 ,它是真实存在的。

    5、代表不同
    平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。
    中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
    众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
    这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。

    6、特点不同
    平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
    中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
    众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有 。

    7、作用不同
    平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。
    中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
    众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。

  • 中位数、众数的求法:
    中位数:
    ①将数据按大小顺序排列;
    ②当数据个数为奇数时,中间的那个数据就是中位数;
    当数据个数为偶数时,居于中间的两个数据的平均数才是中位数。

    众数:找出频数最多的数据,若几个数据频数最多且相同,此时众数就是这几个数据。

考点名称:方差

  • 方差:
    是各个数据与平均数之差的平方和的平均数。
    在概率论和数理统计中,方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
    在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义。
    设有n个数据各数据x1,x2,…,xn各数据与它们的平均数的差的平方分别是,…,,我们用它的平均数,即用来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作

  • 方差特点:
    (1)设c是常数,则D(c)=0。
    (2)设X是随机变量,c是常数,则有D(cX)=(c2)D(X)。
    (3)设 X 与 Y 是两个随机变量,则
    D(X+Y)= D(X)+D(Y)+2E{[X-E(X)][Y-E(Y)]}
    特别的,当X,Y是两个相互独立的随机变量,上式中右边第三项为0(常见协方差),
    则D(X+Y)=D(X)+D(Y)。此性质可以推广到有限多个相互独立的随机变量之和的情况。
    (4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
    (5)D(aX+bY)=a^2DX+b^2DY+2abE{[X-E(X)][Y-E(Y)]}。

    意义
    在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。

    标准差:
    方差的算术平均根,即,并把它叫做这组数据的标准差,它也是一个用来衡量一组数据的波动大小的重要的量。

  • 式:
    方差是实际值与期望值之差平方的期望值,而标准差是方差算术平方根。 在实际计算中,我们用以下公式计算方差。
    方差是各个数据与平均数之差的平方的平均数,即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示样本的平均数,n表示样本的数量,^,xn表示个体,而s^2就表示方差。
    而当用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作为样本X的方差的估计时,发现其数学期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的数学期望才是X的方差,用它作为X的方差的估计具有“无偏性”,所以我们总是用[1/(n-1)]∑(xi-X~)^2来估计X的方差,并且把它叫做“样本方差”。
    方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。记作S&sup2.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。

    方差分析主要用途:
    ①均数差别的显著性检验;
    ②分离各有关因素并估计其对总变异的作用;
    ③分析因素间的交互作用;
    ④方差齐性检验。



http://www.00-edu.com/ks/shuxue/2/125/2019-12-17/1870620.html十二生肖
十二星座