题文
答案
据专家权威分析,试题“记者抽查了市区几所中学的100名学生,调查内容是“你记得父母的生..”主要考查你对 条形图,中位数和众数 等考点的理解。关于这些考点的“档案”如下:
条形图中位数和众数
考点名称:条形图
条形图特点:(1)能够显示每组中的具体数据;(2)易于比较数据之间的差别。描绘条形图的3要素:组数、组宽度、组限。1.组数把数据分成几组,指导性的经验是将数据分成5~10组。2.组宽度通常来说,每组的宽度是一致的。组数和组宽度的选择就不是独立决定的,一个经验标准是:近似组宽度=(最大值-最小值)/组数然后根据四舍五入确定初步的近似组宽度,之后根据数据的状况进行调整。3.组限分为组下限(进入该组的最小可能数据)和组上限(进入该组的最大可能数据),并且一个数据只能在一个组限内。绘画条形图时,不同组之间是有空隙的;而绘画直方图时,不同组之间是没有空隙的。使用条形图的情况:轴标签过长;显示的数值是持续型的。
条形图具有下列图表子类型:簇状条形图和三维簇状条形图 簇状条形图比较各个类别的值。在簇状条形图中,通常沿垂直轴组织类别,而沿水平轴组织数值。三维簇状条形图以三维格式显示水平矩形,而不以三维格式显示数据。
堆积条形图和三维堆积条形图 堆积条形图显示单个项目与整体之间的关系。三维堆积条形图以三维格式显示水平矩形,而不以三维格式显示数据。
百分比堆积条形图和三维百分比堆积条形图 此类型的图表比较各个类别的每一数值所占总数值的百分比大小。三维百分比堆积条形图表以三维格式显示水平矩形,而不以三维格式显示数据。
水平圆柱图、圆锥图和棱锥图 水平圆柱图、圆锥图和棱锥图可以使用为矩形条形图提供的簇状图、堆积图和百分比堆积图,并且它们以完全相同的方式显示和比较数据。唯一的区别是这些图表类型显示圆柱、圆锥和棱锥形状而不是水平矩形。
考点名称:中位数和众数
平均数、中位数和众数异同:一、相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。二、不同点它们之间的区别,主要表现在以下方面。1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。众数:在一组数据中出现次数最多的数叫做这组数据的众数。2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。众数:一组数据中出现次数最多的那个数,不必计算就可求出。3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。4、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。中位数:是一个不完全“虚拟”的数。当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。众 数:是一组数据中的原数据 ,它是真实存在的。5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。6、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有 。7、作用不同平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。