零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 条形图 > 正文 返回 打印

某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成下图所-九年级数学

[db:作者]  2019-12-17 00:00:00  零零社区

题文

某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成下图所示。
(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的______%;
(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?
(3)已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如下表所示,若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客人数为多少万?
题型:解答题  难度:偏难

答案

解:(1)60%;
(2)购买饮料总数位:3×1+2.5×2+2×3+1.5×4=3+5+6+6=20(万瓶)
人均购买=
(3)设B出口人数为x万人,则C出口人数为(x+2)万人,
则有3x+2(x+2)=49,
解得x=9,
所以设B出口游客人数为9万人。

据专家权威分析,试题“某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,..”主要考查你对  条形图,一元一次方程的应用,平均数  等考点的理解。关于这些考点的“档案”如下:

条形图一元一次方程的应用平均数

考点名称:条形图

  • 条形图定义:
    用一个单位长度表示一定的数量,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图。它可以表示出每个项目的具体数量。

  • 条形图特点:
    (1)能够显示每组中的具体数据;
    (2)易于比较数据之间的差别。

    描绘条形图的3要素:组数、组宽度、组限。
    1.组数
    把数据分成几组,指导性的经验是将数据分成5~10组。
    2.组宽度
    通常来说,每组的宽度是一致的。组数和组宽度的选择就不是独立决定的,一个经验标准是:
    近似组宽度=(最大值-最小值)/组数
    然后根据四舍五入确定初步的近似组宽度,之后根据数据的状况进行调整。
    3.组限
    分为组下限(进入该组的最小可能数据)和组上限(进入该组的最大可能数据),并且一个数据只能在一个组限内。
    绘画条形图时,不同组之间是有空隙的;而绘画直方图时,不同组之间是没有空隙的。

    使用条形图的情况:
    轴标签过长;
    显示的数值是持续型的。

  • 条形图具有下列图表子类型:
    簇状条形图和三维簇状条形图  簇状条形图比较各个类别的值。在簇状条形图中,通常沿垂直轴组织类别,而沿水平轴组织数值。三维簇状条形图以三维格式显示水平矩形,而不以三维格式显示数据。

    堆积条形图和三维堆积条形图  堆积条形图显示单个项目与整体之间的关系。三维堆积条形图以三维格式显示水平矩形,而不以三维格式显示数据。

    百分比堆积条形图和三维百分比堆积条形图  此类型的图表比较各个类别的每一数值所占总数值的百分比大小。三维百分比堆积条形图表以三维格式显示水平矩形,而不以三维格式显示数据。

    水平圆柱图、圆锥图和棱锥图  水平圆柱图、圆锥图和棱锥图可以使用为矩形条形图提供的簇状图、堆积图和百分比堆积图,并且它们以完全相同的方式显示和比较数据。唯一的区别是这些图表类型显示圆柱、圆锥和棱锥形状而不是水平矩形。

  • 制作条形图的步骤:
    (1)根据统计资料整理数据,一般整理成表格形式;
    (2)画出横轴、纵轴,确定它们所表示的项目,选定标尺,按一定比例作为长度单位,长短要适中,根据数据的大小对应标出;
    (3)画直条,条形的高与数据的大小成比例。条形的宽度、间隔要一致;
    (4)写上统计总标题、制图日期及数量单位。

考点名称:一元一次方程的应用

  • 许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;
    同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。

  • 列一元一次方程解应用题的一般步骤:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是: 
    ⑴审题:理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。  
    ⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系;
    ①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;
    ②间接未知数(往往二者兼用)。
    一般来说,未知数越多,方程越易列,但越难解。  
    ⑶用含未知数的代数式表示相关的量。  
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。  
    ⑸解方程及检验。  
    ⑹答题。  
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

  • 一元一次方程应用题型及技巧:
    列方程解应用题的几种常见类型及解题技巧:
    (1)和差倍分问题:
    ①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
    ②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
    ③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。

    (2)行程问题:
    基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
    路程=速度×时间。
    ①相遇问题:快行距+慢行距=原距;
    ②追及问题:快行距-慢行距=原距;
    ③航行问题:
    顺水(风)速度=静水(风)速度+水流(风)速度,
    逆水(风)速度=静水(风)速度-水流(风)速度
    例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
    慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?
    两车同时开出,相背而行多少小时后两车相距600公里?
    两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
    两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
    慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)
    例: 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?<?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />

    (3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。 这类问题要搞清人数的变化。
    例.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?

    (4)工程问题:
    三个基本量:工作量、工作时间、工作效率;
    其基本关系为:工作量=工作效率×工作时间;相关关系:各部分工作量之和为1。
    例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

    (5)利润问题:
    基本关系:
    ①商品利润=商品售价-商品进价;
    ②商品利润率=商品利润/商品进价×100%;
    ③商品销售额=商品销售价×商品销售量;
    ④商品的销售利润=(销售价-成本价)×销售量。
    ⑤商品售价=商品标价×折扣率例.
    例:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

    (6)数字问题:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为10b+a, 百位数可表示为100c+10b+a,然后抓住数字间或新数、原数之间的关系找等量关系列方程。
    数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;
    偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
    例:有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

    (7)盈亏问题:“盈”表示分配中的多余情况;“亏”表示不足或缺少部分。

    (8)储蓄问题:
    其数量关系是:
    利息=本金×利率×存期;:(注意:利息税)。
    本息=本金+利息,利息税=利息×利息税率。
    注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。 

    (9)溶液配制问题:
    其基本数量关系是:溶液质量=溶质质量+溶剂质量;
    溶质质量=溶液中所含溶质的质量分数。
    这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。 

    (10)比例分配问题: 
    这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
    常用等量关系:各部分之和=总量。 
    还有劳力调配问题、配套问题、年龄问题、比赛积分问题、增长率问题等都会有涉及。

考点名称:平均数

  • 平均数:
    是指在一组数据中所有数据之和再除以数据的个数。平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标。
    解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。
    在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。

  • 平均数的分类:
    (1)算术平均数:一般地,如果有n个数 ,那么 ,叫做这n个数的算术平均数。
    (2)加权平均数:一组数据点的权分别为,那么称为这n个数的加权平均数。
    (3)样本平均数:样本中所有个体的平均数。
    (4)总体平均数:总体中所有个体的平均数,统计学中常用样本的平均数估计总体的平均数。

  • 平均数、中位数和众数关系:
    联系:
             平均数、中位数和众数都是来刻画数据平均水平的统计量,它们各有特点。对于平均数大家比较熟悉,中位数刻画了一组数据的中等水平,众数刻画了一组数据中出现次数最多的情况。
            平均数非常明显的优点之一是,它能够利用所有数据的特征,而且比较好算。另外,在数学上,平均数是使误差平方和达到最小的统计量,也就是说利用平均数代表数据,可以使二次损失最小。因此,平均数在数学中是一个常用的统计量。但是平均数也有不足之处,正是因为它利用了所有数据的信息,平均数容易受极端数据的影响。
             例如,在一个单位里,如果经理和副经理工资特别高,就会使得这个单位所有成员工资的平均水平也表现得很高,但事实上,除去经理和副经理之外,剩余所有人的平均工资并不是很高。这时,中位数和众数可能是刻画这个单位所有人员工资平均水平更合理的统计量。
            中位数和众数这两个统计量的特点都是能够避免极端数据,但缺点是没有完全利用数据所反映出来的信息。
            由于各个统计量有各自的特征,所以需要我们根据实际问题来选择合适的统计量。
            当然,出现极端数据不一定用中位数,一般,统计上有一个方法,就要认为这个数据不是来源于这个总体的,因而把这个数据去掉。比如大家熟悉的跳水比赛评分,为什么要去掉一个最高分、一个最低分呢,就认为这两个分不是来源于这个总体,不能代表裁判的鉴赏力。于是去掉以后再求剩下数据的平均数。需要指出的是,我们处理的数据,大部分是对称的数据,数据符合或者近似符合正态分布。这时候,均值(平均数)、中位数和众数是一样的。

    区别:
            只有在数据分布偏态(不对称)的情况下,才会出现均值、中位数和众数的区别。所以说,如果是正态的话,用哪个统计量都行。如果偏态的情况特别严重的话,可以用中位数。
             除了需要刻画平均水平的统计量,统计中还有刻画数据波动情况的统计量。比如,平均数同样是5,它所代表的数据可能是1、3、5、7、9,可能是4、4.5、5、5.5、6。也就是说5所代表的不同组数据的波动情况是不一样的。怎样刻画数据的波动情况呢?很自然的想法就是用最大值减最小值,即求一组数据的极差。数学中还有方差、标准差等许多用来刻画数据特征的统计量。当然这些都是教师感兴趣、值得了解的内容,不是小学数学的教学要求。

  • 平均数的求法:
    (1)公式法:
    (2)加权平均数公式: 。



http://www.00-edu.com/ks/shuxue/2/126/2019-12-18/1878438.html十二生肖
十二星座