零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 二元多次(二次以上)方程(组) > 正文 返回 打印

求不定方程2x+5y+7z+3t=10的整数解.-数学

[db:作者]  2019-12-19 00:00:00  互联网

题文

求不定方程2x+5y+7z+3t=10的整数解.
题型:解答题  难度:中档

答案

2x+5y+7z+3t=10,
x=5-2y-3z-t-
y+z+t
2

设k=-
y+z+t
2

因为x是整数,所以k也是整数
t=-2k-y-z
令y=m,z=n,
则t=-2k-m-n,
∴x=5+3k-m-2n.
故x=5+3k-m-2n,y=m,z=n,t=-2k-m-n,其中k,m,n是整数,此方程有无数组整数解.

据专家权威分析,试题“求不定方程2x+5y+7z+3t=10的整数解.-数学-”主要考查你对  二元多次(二次以上)方程(组)  等考点的理解。关于这些考点的“档案”如下:

二元多次(二次以上)方程(组)

考点名称:二元多次(二次以上)方程(组)

  • 定义:二元二次方程组即至少有一个二元二次方程的方程组,另一个是不高于二次的二元整式方程
    二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
    二元二次方程组的一般解法是代入法:
    在(1)中先将x看作常量,把(1)看作关于x的一元二次方程,用y表示x后,代入(2)中,得到关于y的方程。因为在解(1)的结果中,可能得到y是x的双值函数,所以可能得到两个方程,也可能得到无理方程,无理方程有理化后,最高可能得到四次方程,但仍有代数解。



http://www.00-edu.com/ks/shuxue/2/133/2019-12-19/1881667.html十二生肖
十二星座