零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 直线,线段,射线 > 正文 返回 打印

下面命题中:(1)旋转不改变图形的形状和大小,(2)轴反射不改变图形的形状和大小,(3)连接两点的所有线中,线段最短,(4)三角形的内角和等于180°.属于公理的有()A.1个B.2个C.3-数学

[db:作者]  2019-12-31 00:00:00  互联网

题文

下面命题中:
(1)旋转不改变图形的形状和大小,(2)轴反射不改变图形的形状和大小,
(3)连接两点的所有线中,线段最短,(4)三角形的内角和等于180°.
属于公理的有(  )
A.1个B.2个C.3个D.4个
题型:单选题  难度:偏易

答案

(1)旋转不改变图形的形状和大小,正确且是公理;
(2)轴反射不改变图形的形状和大小,正确且是公理;
(3)连接两点的所有线中,线段最短,正确且是公理;
(4)三角形的内角和等于180°,正确但不是公理.
综上可得(1)(2)(3)正确.
故选C.

据专家权威分析,试题“下面命题中:(1)旋转不改变图形的形状和大小,(2)轴反射不改变图形..”主要考查你对  直线,线段,射线,三角形的内角和定理,轴对称,图形旋转  等考点的理解。关于这些考点的“档案”如下:

直线,线段,射线三角形的内角和定理轴对称图形旋转

考点名称:直线,线段,射线

  • 基本概念:
    直线:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。一条直线可以用一个小写字母表示。
    线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。一条线段可用它的端点的两个大写字母来表示。
    射线:直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。一条射线可以用端点和射线上另一点来表示。
    注意:
    ①线和射线无长度,线段有长度。
    ②直线无端点,射线有一个端点,线段有两个端点。

  • 直线、射线、线段的基本性质:

    图形 表示法 端点 延长线 能否度量 基本性质
    直线 没有端点的一条线 一条线,
    不要端点
    可以向两边无限延长 两端都没有端点,可以无限延长,不可测量的线
    射线 只有一个端点的一条线 一条线,
    只有一边有端点
    一个 可以向一边无限延长 一端有端点,可以向一边无限延长,不可测量的线
    线段 两边都有端点的一条线 一条线,两边都有端点 两个 不能延长 两端都有端点,不能延长,可测量的线

  • 直线、射线、线段区别:
    直线没有端点,2边可无限延长;
    射线有1端有端点,另一端可无限延长;
    线段,有2个端点,而2个端点间的距离就是这条线段的长度。

    直线除了“直”这个特点外,还有一个很重要的特点,那就是它可以向两个方向无限延伸,永远没有尽头,所以,直线是不可能度量的。因此,在画直线时,要画出没有端点的直线,表示可以无限延伸;
    射线只有一个端点,可以向一个方向无限延伸,也永远没有尽头。所以,射线也是不可能度量的。直线上任意的一点可以把这条直线分成两条方向相反的射线,因此,射线是直线的一部分。虽然射线是直线的一部分,但由于它们都是不能度量的,所以,它们之间没有长短可以比较;
    线段有两个端点,它有一定的长度,可以度量。线段也是直线的一部分。

  • 各种图形表示方法:
    直线:一个小写字母或两个大写字母,但前面必须加“直线”两字,如:直线l,直线m;直线AB,直线CD。
    例:直线l;直线AB。
    射线:一个小写字母或端点的大写字母。和射线上的一个大写字母,前面必须加“射线”两字。如:射线a;射线OA。
    例:射线AB。
    线段:用表示端点的大写字母表示,如线段AB;用一个小写字母表示,如线段a。
    例:线段AB;线段a 。

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

考点名称:轴对称

  • 轴对称的定义:
    把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

  • 轴对称的性质:
    (1)对应点所连的线段被对称轴垂直平分;
    (2)对应线段相等,对应角相等;
    (3)关于某直线对称的两个图形是全等图形。

  • 轴对称的判定:
    如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
    这样就得到了以下性质:
    1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
    2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
    3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。 
    4.对称轴是到线段两端距离相等的点的集合。

    轴对称作用:
    可以通过对称轴的一边从而画出另一边。
    可以通过画对称轴得出的两个图形全等。
    扩展到轴对称的应用以及函数图像的意义。

    轴对称的应用:
    关于平面直角坐标系的X,Y对称意义
    如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
    相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

    关于二次函数图像的对称轴公式(也叫做轴对称公式 )
    设二次函数的解析式是 y=ax2+bx+c
    则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

    在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
    譬如,等腰三角形经常添设顶角平分线;
    矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
    正方形,菱形问题经常添设对角线等等。
    另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,
    或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

考点名称:图形旋转

  • 定义:
    在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。
    图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

  • 图形旋转性质:
    (1)对应点到旋转中心的距离相等。
    (2)对应点与旋转中心所连线段的夹角等于旋转角。
    旋转对称中心
    把一个图形绕着一个点旋转一定的角度后,与原来的图形相吻合,这种图形叫做 旋转对称图形,这个定点叫做 旋转对称中心,旋转的角度叫做 旋转角。(旋转角大于0°小于360°)



http://www.00-edu.com/ks/shuxue/2/137/2020-01-01/1902333.html十二生肖
十二星座