零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 角的概念 > 正文 返回 打印

下列语句正确的是()A.平角是一条直线B.同位角相等C.同一平面内,过一点有且只有一条直线与已知直线平行D.从直线外一点到这条直线的垂线段,叫作点到直线的距离-数学

[db:作者]  2019-12-31 00:00:00  零零社区

题文

下列语句正确的是(  )
A.平角是一条直线
B.同位角相等
C.同一平面内,过一点有且只有一条直线与已知直线平行
D.从直线外一点到这条直线的垂线段,叫作点到直线的距离
题型:单选题  难度:偏易

答案

A、平角和直线是两个不同的概念,故本选项错误;
B、只有两条直线平行时,同位角才相等,故本选项错误;
C、根据平行公理,本选项正确;
D、从直线外一点到这条直线的垂线段的长度,叫作点到直线的距离,而不是垂线段本身,故本选项错误.
故选C.

据专家权威分析,试题“下列语句正确的是()A.平角是一条直线B.同位角相等C.同一平面内,..”主要考查你对  角的概念 ,对顶角,同位角,内错角,同旁内角,平行线的性质,平行线的公理,垂直的判定与性质  等考点的理解。关于这些考点的“档案”如下:

角的概念 对顶角,同位角,内错角,同旁内角平行线的性质,平行线的公理垂直的判定与性质

考点名称:角的概念

  • 角的基本概念:
    从静态角度认识角:由一个点出发的两条射线组成的图形叫角;
    从动态角度认识角:一条射线绕着它的顶点旋转到另一个位置,则这两条射线组成的图像叫角。有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。
    ①因为射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边长无关。
    ②角的大小可以度量,可以比较。
    ③根据角的度数,角可以分为锐角、直角、钝角、平角、周角。
    角的表示:角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,如∠1,∠α,∠BAD等。

  • 角的分类
    根据角的度数,角可以分为锐角、直角、钝角、平角、周角。
    平角:180的角,当角的两边在一条直线上时,组成的角叫做平角。即射线OA绕点O旋转,当终边在始边OA的反向延长线上时所成的角;
    直角:90的角,即线OA绕点O旋转,当终边与始边垂直时所成的角,平角的一半叫做直角;
    锐角:大于0小于90的角,小于直角的角叫做锐角;
    钝角:大于90小于180的角,大于直角且小于平角的角叫做钝角。
    周角:360的角,即射线OA绕点O旋转,当终边与始边重合时所成的角。

    角的性质:
    ①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关;
    ②角的大小可以度量,可以比较;
    ③角可以参与运算。

    角的度量:
    角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“。”,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1′”。把1′的角60等分,每一份叫做1秒的角,1秒记作“1″”。1°=60′=3600″。

考点名称:对顶角,同位角,内错角,同旁内角

  • 对顶角
    一个角的两边分别是另一个角的反向延升线,这两个角是对顶角两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
    两条直线相交,构成两对对顶角。互为对顶角的两个角相等(对顶角的性质)。
    对顶角是针对具有特殊位置的两个角的名称;
    对顶角相等反映的是两个角之间的大小关系。

    同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角。

    内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

    同旁内角: 两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角。

  • 各种角的关系图示:

    直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。
    如图中,∠1与∠3,∠2与∠4是对顶角。
    其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;
    ∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;
    ∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

考点名称:垂直的判定与性质

  • 垂线的定义:
    两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
    直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
    垂线的性质:
    性质1:过一点有且只有一条直线与已知直线垂直。
    性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
    垂直的判定:垂线的定义。



http://www.00-edu.com/ks/shuxue/2/138/2020-01-01/1901469.html十二生肖
十二星座