题文
答案
据专家权威分析,试题“如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线。(1)求..”主要考查你对 角平分线的定义 ,菱形,菱形的性质,菱形的判定 等考点的理解。关于这些考点的“档案”如下:
角平分线的定义 菱形,菱形的性质,菱形的判定
考点名称:角平分线的定义
角平分线的性质:角平分线上的点,到角两边的距离相等定理:角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。逆定理:到角两边的距离相等的点在角平分线上。
考点名称:菱形,菱形的性质,菱形的判定
菱形的性质:①菱形具有平行四边形的一切性质;②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;③菱形的四条边都相等;④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。
菱形的判定:在同一平面内,(1)定义:有一组邻边相等的平行四边形是菱形 (2)定理1:四边都相等的四边形是菱形 (3)定理2:对角线互相垂直的平行四边形是菱形 菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。