首页 > 考试 > 数学 > 初中数学 > 角平分线的定义 > 正文 | 返回 打印 |
|
题型:解答题 难度:中档
答案
理由是:∵AD平分∠EAC, ∴∠1=
∵∠EAC=∠B+∠C,∠B=∠C, ∴∠C=
∴∠C=∠1, ∴AD∥BC. |
据专家权威分析,试题“已知如图所示,∠B=∠C,点B、A、E在同一条直线上,∠EAC=∠B+∠C,且..”主要考查你对 角平分线的定义 ,平行线的判定 等考点的理解。关于这些考点的“档案”如下:
角平分线的定义 平行线的判定
考点名称:角平分线的定义
角平分线的性质:
角平分线上的点,到角两边的距离相等
定理:
角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:
到角两边的距离相等的点在角平分线上。
考点名称:平行线的判定
平行线的判定平行线的判定公理:
(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
还有下面的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
判定方法的逆应用:
在同一平面内,两直线不相交,即平行。
两条直线平行于一条直线,则三条不重合的直线互相平行。
两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
6a⊥c,b⊥c则a∥b。
http://www.00-edu.com/ks/shuxue/2/139/2019-12-31/1895374.html十二生肖十二星座