首页 > 考试 > 数学 > 初中数学 > 角平分线的定义 > 正文 | 返回 打印 |
|
题型:解答题 难度:中档
答案
结论:BE=EF=FC,(1分) 理由是:∵△ABC是等边三角形, ∴∠ABC=∠ACB=60°,(2分) ∵OB,OC平分∠ABC,∠ACB, ∴∠OBE=∠OCF=30°,(3分) 连接OE,OF, ∵EM,FN垂直平分OB,OC, ∴OE=BE,OF=FC,(5分) ∴∠BOE=∠OBE=30°,∠COF=∠OCF=30°, ∴∠OEF=∠OFE=60°, ∴三角形OEF是等边三角形,(8分) ∴OF=OE=EF, ∴BE=EF=FC.(10分) |
据专家权威分析,试题“已知等边△ABC中∠ACB、∠ABC的平分线交于点O,BO、CO的垂直平分线分..”主要考查你对 角平分线的定义 ,等边三角形,垂直平分线的性质 等考点的理解。关于这些考点的“档案”如下:
角平分线的定义 等边三角形垂直平分线的性质
考点名称:角平分线的定义
角平分线的性质:
角平分线上的点,到角两边的距离相等
定理:
角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:
到角两边的距离相等的点在角平分线上。
考点名称:等边三角形
性质:
①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)
判定方法:
①三边相等的三角形是等边三角形(定义)
②三个内角都相等(为60度)的三角形是等边三角形
③有一个角是60度的等腰三角形是等边三角形
④ 两个内角为60度的三角形是等边三角形
说明:可首先考虑判断三角形是等腰三角形。
等边三角形的性质与判定理解:
首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
等比三角形的尺规做法:
可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
考点名称:垂直平分线的性质
尺规作法:(用圆规作图)
1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到两个交点(两交点交与线段的异侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
http://www.00-edu.com/ks/shuxue/2/139/2019-12-31/1895941.html十二生肖十二星座