首页 > 考试 > 数学 > 初中数学 > 角平分线的定义 > 正文 | 返回 打印 |
|
题型:填空题 难度:偏易
答案
∵△DEF是等腰直角三角形, ∴∠EDF=∠EFD=45°, 同理可得∠AEB=30°,∠BED=60°, 则∠AFD=∠DEF+∠EDF=90°+45°=135°.(三角形外角性质) ∴∠AFD=135度,∠AEB=30度,∠BED=60度. |
据专家权威分析,试题“如图是一套三角尺组成的图形,则∠AFD=______度,∠AEB=______度,..”主要考查你对 角平分线的定义 ,三角形的外角性质 等考点的理解。关于这些考点的“档案”如下:
角平分线的定义 三角形的外角性质
考点名称:角平分线的定义
角平分线的性质:
角平分线上的点,到角两边的距离相等
定理:
角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:
到角两边的距离相等的点在角平分线上。
考点名称:三角形的外角性质
三角形的外角特征:
①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
性质:
①. 三角形的外角与它相邻的内角互补。
②. 三角形的一个外角等于和它不相邻的两个内角的和。
③. 三角形的一个外角大于任何一个和它不相邻的内角。
④. 三角形的外角和等于360°。
设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。
定理:三角形的一个外角等于不相邻的两个内角和。
定理:三角形的三个内角和为180度。
http://www.00-edu.com/ks/shuxue/2/139/2020-01-01/1897163.html十二生肖十二星座