首页 > 考试 > 数学 > 初中数学 > 角平分线的定义 > 正文 | 返回 打印 |
|
题型:解答题 难度:中档
答案
∠B=∠C 理由:∵AE∥BC ∴∠DAE=∠B,∠EAC=∠C ∵AE平分∠DAC ∴∠DAE=∠EAC ∴∠B=∠C. |
据专家权威分析,试题“已知:8十平分△8BC的外角,且8十∥BC,试判断∠B、∠C的大小关系,并..”主要考查你对 角平分线的定义 ,平行线的性质,平行线的公理,三角形的外角性质 等考点的理解。关于这些考点的“档案”如下:
角平分线的定义 平行线的性质,平行线的公理三角形的外角性质
考点名称:角平分线的定义
角平分线的性质:
角平分线上的点,到角两边的距离相等
定理:
角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:
到角两边的距离相等的点在角平分线上。
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。
平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
考点名称:三角形的外角性质
三角形的外角特征:
①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
性质:
①. 三角形的外角与它相邻的内角互补。
②. 三角形的一个外角等于和它不相邻的两个内角的和。
③. 三角形的一个外角大于任何一个和它不相邻的内角。
④. 三角形的外角和等于360°。
设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。
定理:三角形的一个外角等于不相邻的两个内角和。
定理:三角形的三个内角和为180度。
http://www.00-edu.com/ks/shuxue/2/139/2020-01-01/1897334.html十二生肖十二星座