题文
答案
据专家权威分析,试题“下列命题错误的是()A.如果两个角角度之和为180°,那么这两个角一..”主要考查你对 余角,补角,相交线,命题,定理 等考点的理解。关于这些考点的“档案”如下:
余角,补角相交线命题,定理
考点名称:余角,补角
余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A
考点名称:相交线
相交线性质:∠1和∠2有一条公共边OC,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角。∠1与∠2互补,∠3与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,∠2=∠4.这样,我们得到了对顶角的性质:对顶角相等。
垂线: 垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即: 过一点有且只有一条直线与已知直线垂直。连接直线外一点与直线上各点的所有线段中,垂线段最短. 简单说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
考点名称:命题,定理
命题的分类:(按正确、错误与否分)分为真命题(正确的命题),假命题(错误的命题), 所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。 所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
四种命题:1.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。2.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。3.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。相互关系:1.四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。2.四种命题的真假关系:①两个命题互为逆否命题,它们有相同的真假性。②两个命题为互逆命题或互否命题,它们的真假性没有关系(原命题与逆否命题同真同假,逆命题与否命题同真同假)
定理结构:定理一般都有一个设定——一大堆条件。然后它有结论——一个在条件下成立的数学叙述。通常写作「若条件,则结论」。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。逆定理:若存在某叙述为A→B,其逆叙述就是B→A。逆叙述成立的情况是A←→B,否则通常都是倒果为因,不合常理。若某叙述是定理,其成立的逆叙述就是逆定理。若某叙述和其逆叙述都为真,条件必要且充足。 若某叙述为真,其逆叙述为假,条件充足。 若某叙述为假,其逆叙述为真,条件必要。
常用数学定理:1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价5 、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率6 、加数+加数=和 和-一个加数=另一个加数7 、被减数-减数=差 被减数-差=减数 差+减数=被减数8 、因数×因数=积 积÷一个因数=另一个因数9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式:1 、正方形 C周长 S面积 a边长 周长=边长×4 ;C=4a;面积=边长×边长; S=a×a2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6; S棱=a×a×6 ;体积=棱长×棱长×棱长; V=a×a×a3、 长方形 C周长 S面积 a边长 周长=(长+宽)×2 ;C=2(a+b) ;面积=长×宽 ;S=ab4 、长方体 V:体积 s:面积 a:长 b: 宽 c:高 表面积(长×宽+长×高+宽×高)×2; S=2(ab+bc+ca);体积=长×宽×高 ;V=abc5、 三角形 s面积 a底 h高 面积=底×高÷2 ;s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高6、 平行四边形 s面积 a底 h高 面积=底×高 s=ah7、 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2;s=(a+b)× h÷28、 圆形 S面积 C周长 ∏ d=直径 r=半径周长=直径×∏=2×∏×半径; C=∏d=2∏r ;面积=半径×半径×∏9、 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 侧面积=底面周长×高;表面积=侧面积+底面积×2 ;体积=底面积×高 ;体积=侧面积÷2×半径10、 圆锥体 v:体积 h:高 s:底面积 r:底面半径 体积=底面积×高÷3