零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 认识立体几何图形 > 正文 返回 打印

十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据-七年级数学

[db:作者]  2020-01-02 00:00:00  互联网

题文

十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:
(1)根据上面多面体模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_________
(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_________.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.


题型:解答题  难度:中档

答案

解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2;
(2)由题意得:F﹣8+F﹣30=2,
解得F=20;
(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;
∴共有24×3÷2=36条棱,
那么24+F﹣36=2,解得F=14,
∴x+y=14.

据专家权威分析,试题“十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、..”主要考查你对  认识立体几何图形  等考点的理解。关于这些考点的“档案”如下:

认识立体几何图形

考点名称:认识立体几何图形

  • 立体几何图形:
    从实物中抽象出来的各种图形,统称为几何图形,几何图形是数学研究的主要对象之一。有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各个部分不都在同一平面内,它们是立体图形。由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。即由面围成体,看一个体最多看到立体图形实物三个面。

  • 常见立体几何图形及性质:
    ①正方体:
    有8个顶点,6个面。每个面面积相等(或每个面都有正方形组成)。有12条棱,每条棱长的长度都相等。(正方体是特殊的长方体)
    ②长方体:
    有8个顶点,6个面。每个面都由长方形或相对的一组正方形组成。有12条棱,相对的4条棱的棱长相等。
    ③圆柱:
    上下两个面为大小相同的圆形。有一个曲面叫侧面。展开后为长方形或正方形或平行四边形。有无数条高,这些高的长度都相等。
    ④圆锥:
    有1个顶点,1个曲面,一个底面。展开后为扇形。只有1条高。四面体有1个顶点,四面六条棱高。
    ⑤直三棱柱:
    三条侧棱切平行,上表面和下表面是平行且全等的三角形。
    ⑥球:
    球是生活中最常见的图形之一,例如篮球、足球都是球,球是由一个面所围成的几何体。

  • 常见的立体几何图形视图:
    几何图形 图形
    长方体
    正方体
    圆锥
    圆柱
    圆锥



http://www.00-edu.com/ks/shuxue/2/142/2020-01-02/1907592.html十二生肖
十二星座