零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 认识立体几何图形 > 正文 返回 打印

已知一个直五棱柱的底面是4cm的五边形,侧棱长是6cm,请回答下列问题:(1)这个直五棱柱一共有几个顶点?几个面?(2)这个直五棱柱的侧面积是多少?-数学

[db:作者]  2020-01-02 00:00:00  零零社区

题文

已知一个直五棱柱的底面是4cm的五边形,侧棱长是6cm,请回答下列问题:
(1)这个直五棱柱一共有几个顶点?几个面?
(2)这个直五棱柱的侧面积是多少?
题型:解答题  难度:中档

答案

(1)这个直五棱柱一共有10个顶点,7个面;

(2)4×6×5=120(cm2).
答:这个直五棱柱的侧面积是120cm2

据专家权威分析,试题“已知一个直五棱柱的底面是4cm的五边形,侧棱长是6cm,请回答下列..”主要考查你对  认识立体几何图形,几何体的表面积,体积  等考点的理解。关于这些考点的“档案”如下:

认识立体几何图形几何体的表面积,体积

考点名称:认识立体几何图形

  • 立体几何图形:
    从实物中抽象出来的各种图形,统称为几何图形,几何图形是数学研究的主要对象之一。有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各个部分不都在同一平面内,它们是立体图形。由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。即由面围成体,看一个体最多看到立体图形实物三个面。

  • 常见立体几何图形及性质:
    ①正方体:
    有8个顶点,6个面。每个面面积相等(或每个面都有正方形组成)。有12条棱,每条棱长的长度都相等。(正方体是特殊的长方体)
    ②长方体:
    有8个顶点,6个面。每个面都由长方形或相对的一组正方形组成。有12条棱,相对的4条棱的棱长相等。
    ③圆柱:
    上下两个面为大小相同的圆形。有一个曲面叫侧面。展开后为长方形或正方形或平行四边形。有无数条高,这些高的长度都相等。
    ④圆锥:
    有1个顶点,1个曲面,一个底面。展开后为扇形。只有1条高。四面体有1个顶点,四面六条棱高。
    ⑤直三棱柱:
    三条侧棱切平行,上表面和下表面是平行且全等的三角形。
    ⑥球:
    球是生活中最常见的图形之一,例如篮球、足球都是球,球是由一个面所围成的几何体。

  • 常见的立体几何图形视图:
    几何图形 图形
    长方体
    正方体
    圆锥
    圆柱
    圆锥

考点名称:几何体的表面积,体积

  • 几何体的表面积和体积要求:
    认识柱、锥、台、球及其简单组合体的结构特征,了解柱、锥、台、球的概念;
    了解柱、锥、台、球的表面积与体积的计算,并能运用公式计算柱、锥、台、球及其简单组合体的表面积与体积。

  • 几何体一般概念及性质:
    1、圆柱:可以看做以矩形的一边为旋转轴、旋转一周形成的曲面所围成的几何体
    2、圆锥:可以看做以直角三角形的一直角边为旋转轴、旋转一周形成的曲面所围成的几何体
    3、圆台:可以看做以直角梯形中垂直于底边的腰所在的直线为旋转轴、旋转一周形成的曲面所围成的几何体
    4、球:一个半圆绕着它的直径所在的直线旋转一周所形成的曲面所围成的几何体
    5、棱柱有两个面互相平行、而其余每相邻两个面的交线都互相平行
    6、多面体是由若干个平面多边形所围成的几何体
    7、棱锥有一个面是多边形,而其余个面都是有一个公共顶点的三角形

  • 几何体的表面积,体积计算公式:
    1、圆柱体: 
    表面积:2πRr+2πRh
    体积:πR2h (R为圆柱体上下底圆半径,h为圆柱体高) 

    2、圆锥体: 
    表面积:πR2+πR[(h2+R2)的平方根]
    体积: πR2h/3 (r为圆锥体低圆半径,h为其高,

    3、正方体:
    a-边长,
    S=6a2 ,V=a3

    4、长方体: 
    a-长  ,b-宽  ,c-高
    S=2(ab+ac+bc)  V=abc 

    5、棱柱:
    S-底面积  h-高
    V=Sh 

    6、棱锥 :
    S-底面积  h-高
    V=Sh/3 

    7、棱台: 
    S1和S2-上、下底面积  h-高
    V=h[S1+S2+(S1S2)^1/2]/3 

    8、拟柱体: 
    S1-上底面积  ,S2-下底面积  ,S0-中截面积  h-高,
    V=h(S1+S2+4S0)/6 

    9、圆柱: 
    r-底半径  ,h-高  ,C—底面周长  S底—底面积  ,S侧—侧面积  ,S表—表面积
    C=2πr  S底=πr2,S侧=Ch  ,S表=Ch+2S底  ,V=S底h=πr2h 

    10、空心圆柱: 
    R-外圆半径  ,r-内圆半径  h-高
    V=πh(R^2-r^2) 

    11、直圆锥 :
    r-底半径  h-高
    V=πr^2h/3 

    12、圆台: 
    r-上底半径  ,R-下底半径  ,h-高
    V=πh(R2+Rr+r2)/3 

    13、球: 
    r-半径  d-直径
    V=4/3πr^3=πd^3/6 

    14、球缺 
    h-球缺高,r-球半径,a-球缺底半径
    V=πh(3a2+h2)/6 =πh2(3r-h)/3 

    15、球台: 
    r1和r2-球台上、下底半径  h-高
    V=πh[3(r12+r22)+h2]/6 

    16、圆环体: 
    R-环体半径  D-环体直径  r-环体截面半径  d-环体截面直径
    V=2π2Rr2 =π2Dd2/4 

    17、桶状体: 
    D-桶腹直径  d-桶底直径  h-桶高
    V=πh(2D2+d2)/12  ,(母线是圆弧形,圆心是桶的中心) 
    V=πh(2D2+Dd+3d2/4)/15  (母线是抛物线形)



http://www.00-edu.com/ks/shuxue/2/142/2020-01-02/1907808.html十二生肖
十二星座