零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 点、线、面、体 > 正文 返回 打印

阅读并探究下列问题:(1)如图1,将长方形纸片剪两刀,其中AB∥CD,则∠2与∠1、∠3有何关系?为什么?(2)如图2,将长方形纸片剪四刀,其中AB∥CD,则∠2+∠4与∠1+∠3+∠5有何关系?为什么-七年级数学

[db:作者]  2020-01-04 00:00:00  零零社区

题文

阅读并探究下列问题:

(1)如图1,将长方形纸片剪两刀,其中AB∥CD,则∠2与∠1、∠3有何关系?为什么?
(2)如图2,将长方形纸片剪四刀,其中AB∥CD,则∠2+∠4与∠1+∠3+∠5有何关系?为什么?
(3)如图3,将长方形纸片剪n刀,其中AB∥CD,你又有何发现?
(4)如图4,直线AB∥CD,∠EFA=30,∠FGH=90,∠HMN=30,∠CNP=50
则∠GHM=     

题型:解答题  难度:偏易

答案

解:
(1)图1中,∠2=∠1+∠3.理由如下:
过E点作EF∥AB,如图,
则EF∥CD,
∴∠AEF=∠1,∠CEF=∠3,
∴∠2=∠1+∠3
(2)图2中,分别过E、G、F分别作EM∥AB,GN∥AB,FP∥AB,
同(1)的证明方法一样可得∠2+∠4=∠1+∠3+∠5;
(3)图3中,开口向左的角的度数的各等于开口向右的角的度数的和.
(4)图4中,由(3)的结论得,∠BFG+∠GHM+∠MND=∠FGH+∠HMN,
∴30°+∠GHM+50°=90°+30°,
∴∠GHM=40°.
故答案为40°.

(1)过E点作EF∥AB,则EF∥CD,根据两直线平行,内错角相等得到∠AEF=∠1,∠CEF=∠3,即有∠2=∠1+∠3;
(2)分别过E、G、F分别作EM∥AB,GN∥AB,FP∥AB,根据两直线平行,内错角相等,同(1)一样易得到∠2+∠4=∠1+∠3+∠5;
(3)综合(1)(2)易得开口向左的角的度数的各等于开口向右的角的度数的和.
(4)利用(3)的结论得到∠BFG+∠GHM+∠MND=∠FGH+∠HMN,易计算出∠GHM.

据专家权威分析,试题“阅读并探究下列问题:(1)如图1,将长方形纸片剪两刀,其中AB∥CD,..”主要考查你对  点、线、面、体   等考点的理解。关于这些考点的“档案”如下:

点、线、面、体

考点名称:点、线、面、体

  • 点动成线,线动成面,面动成体:
    长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称
    包围着体的是,面有平的面和曲的面两种。
    夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线
    天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是
    几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  • 常见几何体的三视图:

  •  



http://www.00-edu.com/ks/shuxue/2/146/2020-01-05/1916561.html十二生肖
十二星座