零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 平行线的判定 > 正文 返回 打印

用反证法证明“若a∥c,b∥c,则a∥b”,第一步应假设[]A、a∥bB、a与b垂直C、a与b不一定平行D、a与b相交-九年级数学

[db:作者]  2020-01-06 00:00:00  互联网

题文

用反证法证明“若a∥c,b∥c,则a∥b”,第一步应假设(   )
A、 a∥b
B、a与b垂直
C、a与b不一定平行
D、a与b相交
题型:单选题  难度:中档

答案

D

据专家权威分析,试题“用反证法证明“若a∥c,b∥c,则a∥b”,第一步应假设[]A、a∥bB、a与b..”主要考查你对  平行线的判定  等考点的理解。关于这些考点的“档案”如下:

平行线的判定

考点名称:平行线的判定

  • 平行线的概念
    在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
    注意:
    ①平行线是无限延伸的,无论怎样延伸也不相交。
    ②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

  • 平行线的判定平行线的判定公理:
    (1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
    (2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
    (3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
    还有下面的判定方法:
    (1)平行于同一条直线的两直线平行。
    (2)垂直于同一条直线的两直线平行。
    (3)平行线的定义。

    判定方法的逆应用:
    在同一平面内,两直线不相交,即平行。
    两条直线平行于一条直线,则三条不重合的直线互相平行。
    两直线平行,同位角相等。
    两直线平行,内错角相等。
    两直线平行,同旁内角互补。
    6a⊥c,b⊥c则a∥b。



http://www.00-edu.com/ks/shuxue/2/150/2020-01-06/1932629.html十二生肖
十二星座