题文
答案
据专家权威分析,试题“(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位..”主要考查你对 平行线的判定,反比例函数的图像,平行四边形的性质 等考点的理解。关于这些考点的“档案”如下:
平行线的判定反比例函数的图像平行四边形的性质
考点名称:平行线的判定
平行线的判定平行线的判定公理:(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。还有下面的判定方法:(1)平行于同一条直线的两直线平行。(2)垂直于同一条直线的两直线平行。(3)平行线的定义。
判定方法的逆应用:在同一平面内,两直线不相交,即平行。两条直线平行于一条直线,则三条不重合的直线互相平行。两直线平行,同位角相等。两直线平行,内错角相等。两直线平行,同旁内角互补。6a⊥c,b⊥c则a∥b。
考点名称:反比例函数的图像
考点名称:平行四边形的性质
平行四边形的性质:主要性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。(简述为“平行四边形的两组对边分别相等”)(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。(简述为“平行四边形的两组对角分别相等”)(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补(简述为“平行四边形的邻角互补”)(4)夹在两条平行线间的平行线段相等。(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。(简述为“平行四边形的对角线互相平分”)(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)(7)平行四边形的面积等于底和高的积。(可视为矩形)(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(9)平行四边形是中心对称图形,对称中心是两对角线的交点.(10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。(13)平行四边形对角线把平行四边形面积分成四等分。(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。(15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。