零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 平行线的判定 > 正文 返回 打印

如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:①EF∥AD;?②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF。其中正确的个数是[]A、1个B、2个C、3个D、4个-九年级数学

[db:作者]  2020-01-06 00:00:00  互联网

题文

如图,在梯形ABCD 中,AD∥BC ,E 、F 分别是AB 、CD 的中点,则下列结论:①EF∥AD ;?  ②S△ABO=S△DCO;③△OGH 是等腰三角形;④BG=DG ;⑤EG=HF。其中正确的个数是
[     ]

A、1个          
B、2个      
C、3个          
D、4个?

题型:单选题  难度:中档

答案

D

据专家权威分析,试题“如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论..”主要考查你对  平行线的判定,平行线的性质,平行线的公理,等腰三角形的性质,等腰三角形的判定,三角形的周长和面积  等考点的理解。关于这些考点的“档案”如下:

平行线的判定平行线的性质,平行线的公理等腰三角形的性质,等腰三角形的判定三角形的周长和面积

考点名称:平行线的判定

  • 平行线的概念
    在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
    注意:
    ①平行线是无限延伸的,无论怎样延伸也不相交。
    ②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

  • 平行线的判定平行线的判定公理:
    (1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
    (2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
    (3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
    还有下面的判定方法:
    (1)平行于同一条直线的两直线平行。
    (2)垂直于同一条直线的两直线平行。
    (3)平行线的定义。

    判定方法的逆应用:
    在同一平面内,两直线不相交,即平行。
    两条直线平行于一条直线,则三条不重合的直线互相平行。
    两直线平行,同位角相等。
    两直线平行,内错角相等。
    两直线平行,同旁内角互补。
    6a⊥c,b⊥c则a∥b。

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:三角形的周长和面积

  • 三角形的概念:
    由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

    构成三角形的元素:
    边:组成三角形的线段叫做三角形的边;
    顶点:相邻两边的公共端点叫做三角形的顶点;
    内角:相邻两边所组成的角叫做三角形的内角,简称三角形的角。

    三角形有下面三个特性:
    (1)三角形有三条线段;
    (2)三条线段不在同一直线上;
    (3)首尾顺次相接。

    三角形的表示:
    用符号“△,顶点是A、B、C的三角形记作“△ABC”,读作ABC”。

  • 三角形的分类:
    (1)三角形按边的关系分类如下:

    (2)三角形按角的关系分类如下:

    把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

  • 三角形的周长和面积:
    三角形的周长等于三角形三边之和。
    三角形面积=(底×高)÷2。



http://www.00-edu.com/ks/shuxue/2/150/2020-01-06/1934312.html十二生肖
十二星座