题文
答案
据专家权威分析,试题“下列语句正确的是[]A.过一点有且只有一条直线与已知直线平行B.在..”主要考查你对 平行线的判定,垂直的判定与性质,相交线 等考点的理解。关于这些考点的“档案”如下:
平行线的判定垂直的判定与性质相交线
考点名称:平行线的判定
平行线的判定平行线的判定公理:(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。还有下面的判定方法:(1)平行于同一条直线的两直线平行。(2)垂直于同一条直线的两直线平行。(3)平行线的定义。
判定方法的逆应用:在同一平面内,两直线不相交,即平行。两条直线平行于一条直线,则三条不重合的直线互相平行。两直线平行,同位角相等。两直线平行,内错角相等。两直线平行,同旁内角互补。6a⊥c,b⊥c则a∥b。
考点名称:垂直的判定与性质
考点名称:相交线
相交线性质:∠1和∠2有一条公共边OC,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角。∠1与∠2互补,∠3与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,∠2=∠4.这样,我们得到了对顶角的性质:对顶角相等。
垂线: 垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即: 过一点有且只有一条直线与已知直线垂直。连接直线外一点与直线上各点的所有线段中,垂线段最短. 简单说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。