零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 平行线的判定 > 正文 返回 打印

CD、CB为⊙O的切线,B、D为切点,AB是⊙O的直径,试问OC与AD有怎样的位置关系?并证明你的结论.-数学

[db:作者]  2020-01-06 00:00:00  零零社区

题文

CD、CB为⊙O的切线,B、D为切点,AB是⊙O的直径,试问OC与AD有怎样的位置关系?并证明你的结论.
题型:解答题  难度:中档

答案



假设:OC∥AD.
证明:连接AD、BD.
∵AB是⊙O的直径,CD、CB为⊙O的切线,
∴∠OBC=∠ODC=90°;
又∵OB=OD,OC=OC(公共边),
∴△OBC≌△ODC(HL),
∴∠COD=∠COB(两三角形全等,对应角相等);
∵OA=OD,
∴∠OAD=∠ODA(等边对等角);
又∵∠BOD=∠OAD+∠ODA,
∴∠COD=∠ODA,
∴OC∥AD(内错角相等,两直线平行).

据专家权威分析,试题“CD、CB为⊙O的切线,B、D为切点,AB是⊙O的直径,试问OC与AD有怎样..”主要考查你对  平行线的判定,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)  等考点的理解。关于这些考点的“档案”如下:

平行线的判定直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)

考点名称:平行线的判定

  • 平行线的概念
    在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
    注意:
    ①平行线是无限延伸的,无论怎样延伸也不相交。
    ②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

  • 平行线的判定平行线的判定公理:
    (1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
    (2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
    (3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
    还有下面的判定方法:
    (1)平行于同一条直线的两直线平行。
    (2)垂直于同一条直线的两直线平行。
    (3)平行线的定义。

    判定方法的逆应用:
    在同一平面内,两直线不相交,即平行。
    两条直线平行于一条直线,则三条不重合的直线互相平行。
    两直线平行,同位角相等。
    两直线平行,内错角相等。
    两直线平行,同旁内角互补。
    6a⊥c,b⊥c则a∥b。

考点名称:直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)

  • 直线与圆的位置关系:
    直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。
    (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d<r;
    (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。
    (3)相离:直线和圆没有公共点时,叫做直线和圆相离,AB与圆O相离,d>r。(d为圆心到直线的距离)

  • 直线与圆的三种位置关系的判定与性质:
    (1)数量法:通过比较圆心O到直线距离d与圆半径的大小关系来判定,
    如果⊙O的半径为r,圆心O到直线l的距离为d,则有:
    直线l与⊙O相交d<r;
    直线l与⊙O相切d=r;
    直线l与⊙O相离d>r;
    (2)公共点法:通过确定直线与圆的公共点个数来判定。
    直线l与⊙O相交d<r2个公共点;
    直线l与⊙O相切d=r有唯一公共点;
    直线l与⊙O相离d>r无公共点 。

    圆的切线的判定和性质   
    (1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
    (2)切线的性质定理:圆的切线垂直于经过切点的半径。

    切线长:
    在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
    切线长定理:
    从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

  • 直线与圆的位置关系判定方法:
    平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是:
    1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x2+y2+Dx+Ey+F=0,即成为一个关于x的方程
    如果b2-4ac>0,则圆与直线有2交点,即圆与直线相交。
    如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。
    如果b2-4ac<0,则圆与直线有0交点,即圆与直线相离。

    2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x2+y2+Dx+Ey+F=0化为(x-a)2+(y-b)2=r2
    令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么: 
    当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;
    当x1<x=-C/A<x2时,直线与圆相交。 



http://www.00-edu.com/ks/shuxue/2/150/2020-01-07/1936396.html十二生肖
十二星座