零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 平行线的判定 > 正文 返回 打印

如图,四边形ABCD中,∠A=∠D,∠ABC=∠BCD,∠1=∠2,∠4=∠5,∠PBC+∠5+∠BPC=180°,写出图中平行关系,并证明.-数学

[db:作者]  2020-01-06 00:00:00  零零社区

题文

如图,四边形ABCD中,∠A=∠D,∠ABC=∠BCD,∠1=∠2,∠4=∠5,∠PBC+∠5+∠BPC=180°,写出图中平行关系,并证明.
题型:解答题  难度:中档

答案

AD∥BC,PB∥DC,AB∥PC.理由如下:
∵四边形ABCD中,∠A=∠D,∠ABC=∠BCD,
∴∠A+∠ABC=∠D+∠BCD=180°,
∴AD∥BC;
∵∠ABC=∠DCB,∠1=∠2,
∴∠PBC=∠5,
∵∠4=∠5,
∴∠PBC=∠4,
∴PB∥DC(同位角相等,两直线平行);
∵PB∥DC,
∴∠2=∠BPC,
∵∠1=∠2,
∴∠1=∠BPC,
∴AB∥PC.

据专家权威分析,试题“如图,四边形ABCD中,∠A=∠D,∠ABC=∠BCD,∠1=∠2,∠4=∠5,∠PBC+∠5+..”主要考查你对  平行线的判定  等考点的理解。关于这些考点的“档案”如下:

平行线的判定

考点名称:平行线的判定

  • 平行线的概念
    在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
    注意:
    ①平行线是无限延伸的,无论怎样延伸也不相交。
    ②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

  • 平行线的判定平行线的判定公理:
    (1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
    (2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
    (3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
    还有下面的判定方法:
    (1)平行于同一条直线的两直线平行。
    (2)垂直于同一条直线的两直线平行。
    (3)平行线的定义。

    判定方法的逆应用:
    在同一平面内,两直线不相交,即平行。
    两条直线平行于一条直线,则三条不重合的直线互相平行。
    两直线平行,同位角相等。
    两直线平行,内错角相等。
    两直线平行,同旁内角互补。
    6a⊥c,b⊥c则a∥b。



http://www.00-edu.com/ks/shuxue/2/150/2020-01-07/1938406.html十二生肖
十二星座