零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 平行线的判定 > 正文 返回 打印

已知:如图,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D,OC交AB于E.(1)求∠D的度数;(2)求证:AC2=AD?CE;(3)求BCCD的值.-数学

[db:作者]  2020-01-06 00:00:00  互联网

题文

已知:如图,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D,OC交AB于E.
(1)求∠D的度数;
(2)求证:AC2=AD?CE;
(3)求
BC
CD
的值.
题型:解答题  难度:中档

答案

(1)如图,连接OB(1分)
∵⊙O的内接△ABC中,∠BAC=45°,
∴∠BOC=2∠BAC=90°
∵OB=OC,
∴∠OBC=∠OCB=45°
∵AD∥OC,
∴∠D=∠OCB=45°(2分)

(2)证明:∵∠BAC=45°,∠D=45°,
∴∠BAC=∠D(3分)
∵AD∥OC,
∴∠ACE=∠DAC(4分)
∴△ACE∽△DAC
AC
DA
=
CE
AC

∴AC2=AD?CE(5分)

(3)方法一:如图,延长BO交DA的延长线于F,连接OA
∵AD∥OC,
∴∠F=∠BOC=90°
∵∠ABC=15°,
∴∠OBA=∠OBC-∠ABC=30°
∵OA=OB,
∴∠FOA=∠OBA+∠OAB=60°,∠OAF=30°、
∴OF=
1
2
OA
∵AD∥OC,
∴△BOC∽△BFD
BC
BD
=
BO
BF


BC
CD
=
BO
OF
=
OA
OF
=2,即
BC
CD
的值为2(7分)
方法二:作OM⊥BA于M,设⊙O的半径为r,可得BM=

3
2
r,OM=
r
2
,∠MOE=30°,
ME=OM?tan30°=

3
6
r,BE=
2

3
3
r,AE=

3
3
r,所以
BC
CD
=
BE
EA
=2

据专家权威分析,试题“已知:如图,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的..”主要考查你对  平行线的判定  等考点的理解。关于这些考点的“档案”如下:

平行线的判定

考点名称:平行线的判定

  • 平行线的概念
    在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
    注意:
    ①平行线是无限延伸的,无论怎样延伸也不相交。
    ②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

  • 平行线的判定平行线的判定公理:
    (1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
    (2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
    (3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
    还有下面的判定方法:
    (1)平行于同一条直线的两直线平行。
    (2)垂直于同一条直线的两直线平行。
    (3)平行线的定义。

    判定方法的逆应用:
    在同一平面内,两直线不相交,即平行。
    两条直线平行于一条直线,则三条不重合的直线互相平行。
    两直线平行,同位角相等。
    两直线平行,内错角相等。
    两直线平行,同旁内角互补。
    6a⊥c,b⊥c则a∥b。



http://www.00-edu.com/ks/shuxue/2/150/2020-01-07/1938474.html十二生肖
十二星座