题文
答案
据专家权威分析,试题“如图,已知CD是⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是..”主要考查你对 平行线的性质,平行线的公理,圆心角,圆周角,弧和弦 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理圆心角,圆周角,弧和弦
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。推论(平行线的传递性):平行同一直线的两直线平行。∵a∥c,c ∥b∴a∥b。
平行线的性质:1. 两条平行被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。2. 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。3 . 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
考点名称:圆心角,圆周角,弧和弦
圆的定义:在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。弧:圆上任意两点间的部分叫做圆弧,简称弧。 弧用符号“⌒”表示以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。 优弧:大于半圆的弧(多用三个字母表示); 劣弧:小于半圆的弧(多用两个字母表示) 圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。 弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。 推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。圆心角:顶点在圆心的角叫做圆心角。 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。 圆周角的顶点在圆上,它的两边为圆的两条弦。
圆心角特征识别:①顶点是圆心;②两条边都与圆周相交。
计算公式:①L(弧长)=n/180Xπr(n为圆心角度数,以下同);②S(扇形面积) = n/360Xπr2;③扇形圆心角n=(180L)/(πr)(度)。④K=2Rsin(n/2) K=弦长;n=弦所对的圆心角,以度计。
圆心角定理:圆心角的度数等于它所对的弧的度数。理解:(定义)(1)等弧对等圆心角(2)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.(3)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.(4)圆心角的度数和它们对的弧的度数相等.推论:在同圆或等圆中,如果(1)两个圆心角,(2)两条弧,(3)两条弦(4)两条弦上的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等
与圆周角关系:在同圆或等圆中,同弧或同弦所对的圆周角等于二分之一的圆心角。定理证明:分三种情况讨论,始终做直径COD,利用等腰三角形等腰底角相等,外角等于两内角之和来证明。圆周角定理推论:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。①圆周角度数定理:圆周角的度数等于它所对的弧的度数的一半。②同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半。③同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等。(不在同圆或等圆中其实也相等的。注:仅限这一条。)④半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。⑤圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。⑥在同圆或等圆中,圆周角相等<=>弧相等<=>弦相等。