题文
答案
据专家权威分析,试题“如图,AC平分∠BAD,AB∥CD,能推出∠CAD=∠DCA吗?试说明理由-七年级..”主要考查你对 平行线的性质,平行线的公理,角平分线的性质 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理角平分线的性质
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。推论(平行线的传递性):平行同一直线的两直线平行。∵a∥c,c ∥b∴a∥b。
平行线的性质:1. 两条平行被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。2. 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。3 . 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
考点名称:角平分线的性质
角平分线:三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。
角平方线定理:①角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。②角平分线能得到相同的两个角,都等于该角的一半。③三角形三条角平分线相交于一点,并且这一点到三边的距离相等。④三角形的三个角的角平分线相交于一点,这个点称为内心 ,即以此点为圆心可以在三角形内部画一个内切圆。逆定理:在角的内部,到角两边的距离相等的点在角平分线上。