题文
如图,在△ABC中,点D在AC上,DE⊥BC,垂足为E,若AD=2DC,AB=4DE,则sinB等于( )
A. B. C. D.
答案
据专家权威分析,试题“如图,在△ABC中,点D在AC上,DE⊥BC,垂足为E,若AD=2DC,AB=4DE,..”主要考查你对 平行线的性质,平行线的公理,解直角三角形,锐角三角函数的定义 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理解直角三角形锐角三角函数的定义
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。推论(平行线的传递性):平行同一直线的两直线平行。∵a∥c,c ∥b∴a∥b。
平行线的性质:1. 两条平行被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。2. 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。3 . 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
考点名称:解直角三角形
解直角三角形的函数值:
锐角三角函数:sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a(1)互余角的三角函数值之间的关系:若∠ A+∠ B=90°,那么sinA=cosB或sinB=cosA(2)同角的三角函数值之间的关系:①sin2A+cos2A=1②tanA=sinA/cosA③tanA=1/tanB④a/sinA=b/sinB=c/sinC(3)锐角三角函数随角度的变化规律:锐角∠A的tan值和sin值随着角度的增大而增大,cos值随着角度的增大而减小。
解直角三角形的函数值列举:sin1=0.01745240643728351 sin2=0.03489949670250097 sin3=0.05233595624294383 sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346 sin7=0.12186934340514747 sin8=0.13917310096006544 sin9=0.15643446504023087 sin10=0.17364817766693033 sin11=0.1908089953765448 sin12=0.20791169081775931 sin13=0.22495105434386497 sin14=0.24192189559966773 sin15=0.25881904510252074 sin16=0.27563735581699916 sin17=0.2923717047227367 sin18=0.3090169943749474 sin19=0.3255681544571567 sin20=0.3420201433256687 sin21=0.35836794954530027 sin22=0.374606593415912 sin23=0.3907311284892737 sin24=0.40673664307580015 sin25=0.42261826174069944 sin26=0.4383711467890774 sin27=0.45399049973954675 sin28=0.4694715627858908 sin29=0.48480962024633706 sin30=0.49999999999999994 sin31=0.5150380749100542 sin32=0.5299192642332049 sin33=0.544639035015027 sin34=0.5591929034707468 sin35=0.573576436351046 sin36=0.5877852522924731 sin37=0.6018150231520483 sin38=0.6156614753256583 sin39=0.6293203910498375 sin40=0.6427876096865392 sin41=0.6560590289905073 sin42=0.6691306063588582 sin43=0.6819983600624985 sin44=0.6946583704589972 sin45=0.7071067811865475 sin46=0.7193398003386511 sin47=0.7313537016191705 sin48=0.7431448254773941 sin49=0.7547095802227719 sin50=0.766044443118978 sin51=0.7771459614569708 sin52=0.7880107536067219 sin53=0.7986355100472928 sin54=0.8090169943749474 sin55=0.8191520442889918 sin56=0.8290375725550417 sin57=0.8386705679454239 sin58=0.848048096156426 sin59=0.8571673007021122 sin60=0.8660254037844386 sin61=0.8746197071393957 sin62=0.8829475928589269 sin63=0.8910065241883678 sin64=0.898794046299167 sin65=0.9063077870366499 sin66=0.9135454576426009 sin67=0.9205048534524404 sin68=0.9271838545667873 sin69=0.9335804264972017 sin70=0.9396926207859083 sin71=0.9455185755993167 sin72=0.9510565162951535 sin73=0.9563047559630354 sin74=0.9612616959383189 sin75=0.9659258262890683 sin76=0.9702957262759965 sin77=0.9743700647852352 sin78=0.9781476007338057 sin79=0.981627183447664 sin80=0.984807753012208 sin81=0.9876883405951378 sin82=0.9902680687415704 sin83=0.992546151641322 sin84=0.9945218953682733 sin85=0.9961946980917455 sin86=0.9975640502598242 sin87=0.9986295347545738 sin88=0.9993908270190958 sin89=0.9998476951563913 sin90=1
cos1=0.9998476951563913 cos2=0.9993908270190958 cos3=0.9986295347545738 cos4=0.9975640502598242 cos5=0.9961946980917455 cos6=0.9945218953682733 cos7=0.992546151641322 cos8=0.9902680687415704 cos9=0.9876883405951378 cos10=0.984807753012208 cos11=0.981627183447664 cos12=0.9781476007338057 cos13=0.9743700647852352 cos14=0.9702957262759965 cos15=0.9659258262890683 cos16=0.9612616959383189 cos17=0.9563047559630355 cos18=0.9510565162951535 cos19=0.9455185755993168 cos20=0.9396926207859084 cos21=0.9335804264972017 cos22=0.9271838545667874 cos23=0.9205048534524404 cos24=0.9135454576426009 cos25=0.9063077870366499 cos26=0.898794046299167 cos27=0.8910065241883679 cos28=0.882947592858927 cos29=0.8746197071393957 cos30=0.8660254037844387 cos31=0.8571673007021123 cos32=0.848048096156426 cos33=0.838670567945424 cos34=0.8290375725550417 cos35=0.8191520442889918 cos36=0.8090169943749474 cos37=0.7986355100472928 cos38=0.7880107536067219 cos39=0.7771459614569709 cos40=0.766044443118978 cos41=0.754709580222772 cos42=0.7431448254773942 cos43=0.7313537016191705 cos44=0.7193398003386512 cos45=0.7071067811865476 cos46=0.6946583704589974 cos47=0.6819983600624985 cos48=0.6691306063588582 cos49=0.6560590289905074 cos50=0.6427876096865394 cos51=0.6293203910498375 cos52=0.6156614753256583 cos53=0.6018150231520484 cos54=0.5877852522924731 cos55=0.5735764363510462 cos56=0.5591929034707468 cos57=0.5446390350150272 cos58=0.5299192642332049 cos59=0.5150380749100544 cos60=0.5000000000000001 cos61=0.4848096202463371 cos62=0.46947156278589086 cos63=0.4539904997395468 cos64=0.43837114678907746 cos65=0.42261826174069944 cos66=0.4067366430758004 cos67=0.3907311284892737 cos68=0.3746065934159122 cos69=0.35836794954530015 cos70=0.3420201433256688 cos71=0.32556815445715675 cos72=0.30901699437494745 cos73=0.29237170472273677 cos74=0.27563735581699916 cos75=0.25881904510252074 cos76=0.24192189559966767 cos77=0.22495105434386514 cos78=0.20791169081775923 cos79=0.19080899537654491 cos80=0.17364817766693041 cos81=0.15643446504023092 cos82=0.13917310096006546 cos83=0.12186934340514749 cos84=0.10452846326765346 cos85=0.08715574274765836 cos86=0.06975647374412523 cos87=0.052335956242943966 cos88=0.03489949670250108 cos89=0.0174524064372836 cos90=0
tan1=0.017455064928217585 tan2=0.03492076949174773 tan3=0.052407779283041196 tan4=0.06992681194351041 tan5=0.08748866352592401 tan6=0.10510423526567646 tan7=0.1227845609029046 tan8=0.14054083470239145 tan9=0.15838444032453627 tan10=0.17632698070846497 tan11=0.19438030913771848 tan12=0.2125565616700221 tan13=0.2308681911255631 tan14=0.24932800284318068 tan15=0.2679491924311227 tan16=0.2867453857588079 tan17=0.30573068145866033 tan18=0.3249196962329063 tan19=0.34432761328966527 tan20=0.36397023426620234 tan21=0.3838640350354158 tan22=0.4040262258351568 tan23=0.4244748162096047 tan24=0.4452286853085361 tan25=0.4663076581549986 tan26=0.4877325885658614 tan27=0.5095254494944288 tan28=0.5317094316614788 tan29=0.554309051452769 tan30=0.5773502691896257 tan31=0.6008606190275604 tan32=0.6248693519093275 tan33=0.6494075931975104 tan34=0.6745085168424265 tan35=0.7002075382097097 tan36=0.7265425280053609 tan37=0.7535540501027942 tan38=0.7812856265067174 tan39=0.8097840331950072 tan40=0.8390996311772799 tan41=0.8692867378162267 tan42=0.9004040442978399 tan43=0.9325150861376618 tan44=0.9656887748070739 tan45=0.9999999999999999 tan46=1.0355303137905693 tan47=1.0723687100246826 tan48=1.1106125148291927 tan49=1.1503684072210092 tan50=1.19175359259421 tan51=1.234897156535051 tan52=1.2799416321930785 tan53=1.3270448216204098 tan54=1.3763819204711733 tan55=1.4281480067421144 tan56=1.4825609685127403 tan57=1.5398649638145827 tan58=1.6003345290410506 tan59=1.6642794823505173 tan60=1.7320508075688767 tan61=1.8040477552714235 tan62=1.8807264653463318 tan63=1.9626105055051503 tan64=2.050303841579296 tan65=2.1445069205095586 tan66=2.246036773904215 tan67=2.355852365823753 tan68=2.4750868534162946 tan69=2.6050890646938023 tan70=2.7474774194546216 tan71=2.904210877675822 tan72=3.0776835371752526 tan73=3.2708526184841404 tan74=3.4874144438409087 tan75=3.7320508075688776 tan76=4.0107809335358455 tan77=4.331475874284153 tan78=4.704630109478456 tan79=5.144554015970307 tan80=5.671281819617707 tan81=6.313751514675041 tan82=7.115369722384207 tan83=8.144346427974593 tan84=9.514364454222587 tan85=11.43005230276132 tan86=14.300666256711942 tan87=19.08113668772816 tan88=28.636253282915515 tan89=57.289961630759144 tan90=(无限)
考点名称:锐角三角函数的定义
锐角三角函数:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。初中学习的 锐角三角函数值的定义方法是在直角三角形中定义的,所以在初中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到某个直角三角形中。所谓锐角三角函数是指:我们初中研究的都是锐角的三角函数。初中研究的锐角的三角函数为:正弦(sin),余弦(cos),正切(tan)。正弦:在直角三角形中,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;余弦:在直角三角形中,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;正切:在直角三角形中,锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即,锐角A的正弦、余弦、正切都叫做A的锐角三角函数。
锐角三角函数的关系式:同角三角函数基本关系式tanα·cotα=1sin2α·cos2α=1cos2α·sin2α=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα(sinα)2+(cosα)2=11+tanα=secα1+cotα=cscα诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)二倍角、三倍角的正弦、余弦和正切公式Sin(2α)=2sinαcosαCos(2α)=(cosα)2-(sinα)2=2(cosα)2-1=1-2(sinα)2Tan(2α)=2tanα/(1-tanα)sin(3α)=3sinα-4sin3α=4sinα·sin(60°+α)sin(60°-α)cos(3α)=4cos3α-3cosα=4cosα·cos(60°+α)cos(60°-α)tan(3α)=(3tanα-tan3α)/(1-3tan2α)=tanαtan(π/3+α)tan(π/3-α)和差化积、积化和差公式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]sinαcosβ=-[sin(α+β)+sin(α-β)]sinαsinβ=-[1][cos(α+β)-cos(α-β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2