首页 > 考试 > 数学 > 初中数学 > 平行线的性质,平行线的公理 > 正文 | 返回 打印 |
|
题型:解答题 难度:中档
答案
证明:∵△ABC是等边三角形, ∴∠A=∠B=∠C=60°; 又∵DE∥AC, ∴∠BDE=∠A=60°,∠BED=∠C=60°, ∴∠B=∠BDE=∠BED=60°, ∴△BDE是等边三角形. |
据专家权威分析,试题“如图,△ABC是等边三角形,DE∥AC,交AB、BC于D、E.求证:△BDE是等边..”主要考查你对 平行线的性质,平行线的公理,等边三角形 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理等边三角形
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。
平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
考点名称:等边三角形
性质:
①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)
判定方法:
①三边相等的三角形是等边三角形(定义)
②三个内角都相等(为60度)的三角形是等边三角形
③有一个角是60度的等腰三角形是等边三角形
④ 两个内角为60度的三角形是等边三角形
说明:可首先考虑判断三角形是等腰三角形。
等边三角形的性质与判定理解:
首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
等比三角形的尺规做法:
可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
http://www.00-edu.com/ks/shuxue/2/151/2020-01-07/1941491.html十二生肖十二星座