零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 平行线的性质,平行线的公理 > 正文 返回 打印

两条平行线a、b被第三条直线c所截得的同旁内角的平分线的交点到直线c的距离是2cm,则a、b之间的距离是()A.3cmB.4cmC.5cmD.6cm-数学

[db:作者]  2020-01-06 00:00:00  零零社区

题文

两条平行线a、b被第三条直线c所截得的同旁内角的平分线的交点到直线c的距离是2cm,则a、b之间的距离是(  )
A.3cmB.4cmC.5cmD.6cm
题型:单选题  难度:中档

答案



如图,过点P作EF⊥b,
∵a∥b,
∴EF⊥a,
∴EF就是a、b之间的距离,
∵P到直线c的距离是2,即PD=2cm,点P是同旁内角的平分线的交点,
∴PE=PD,PF=PD,(角平分线上的点到角的两边的距离相等),
∴EF=PE+PF=2+2=4cm.
故选B+.

据专家权威分析,试题“两条平行线a、b被第三条直线c所截得的同旁内角的平分线的交点到直..”主要考查你对  平行线的性质,平行线的公理,角平分线的性质  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理角平分线的性质

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

考点名称:角平分线的性质

  • 角平分线:
    三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。

  • 角平方线定理:
    ①角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。
    ②角平分线能得到相同的两个角,都等于该角的一半。
    ③三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    ④三角形的三个角的角平分线相交于一点,这个点称为内心 ,即以此点为圆心可以在三角形内部画一个内切圆。
    逆定理:
    在角的内部,到角两边的距离相等的点在角平分线上。

  • 角平分线作法:
    在角AOB中,画角平分线

    方法一:
    1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M,N。
    2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
    3.作射线OP。
    则射线OP为角AOB的角平分线。
    当然,角平分线的作法有很多种。下面再提供一种尺规作图的方法供参考。

    方法二:
    1.在两边OA、OB上分别截取OM、OA和ON、OB,且使得OM=ON,OA=OB;
    2.连接AN与BM,他们相交于点P;
    3.作射线OP。
    则射线OP为角AOB的角平分线。



http://www.00-edu.com/ks/shuxue/2/151/2020-01-07/1941595.html十二生肖
十二星座