零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 平行线的性质,平行线的公理 > 正文 返回 打印

下列说法:(1)两点之间的距离是两点间的线段;(2)如果两条线段没有交点,那么这两条线段所在直线也没有交点;(3)邻补角的两条角平分线构成一个直角;(4)同一平面内,过一点有-数学

[db:作者]  2020-01-06 00:00:00  零零社区

题文

下列说法:(1)两点之间的距离是两点间的线段;(2)如果两条线段没有交点,那么这两条线段所在直线也没有交点;(3)邻补角的两条角平分线构成一个直角;(4)同一平面内,过一点有且只有一条直线与已知直线垂直;(5)同一平面内,过一点有且只有一条直线与已知直线平行.其中正确的是(  )
A.1个B.2个C.3个D.4个
题型:单选题  难度:偏易

答案

(1)两点之间的距离是两点间的线段长度,故(1)错误;
(2)如果两条线段没有交点,那么这两条线段所在直线不一定没有交点,故(2)错误;
(3)邻补角的两条角平分线一定构成一个直角,故(3)正确;
(4)同一平面内,过一点有且只有一条直线与已知直线垂直,故(4)正确;
(5)同一平面内,过直线外一点有且只有一条直线与已知直线平行,故(5)错误.
其中正确的是2个.
故本题选B.

据专家权威分析,试题“下列说法:(1)两点之间的距离是两点间的线段;(2)如果两条线段没有..”主要考查你对  平行线的性质,平行线的公理,直线,线段,射线,角平分线的定义 ,垂直的判定与性质,相交线  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理直线,线段,射线角平分线的定义 垂直的判定与性质相交线

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

考点名称:直线,线段,射线

  • 基本概念:
    直线:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。一条直线可以用一个小写字母表示。
    线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。一条线段可用它的端点的两个大写字母来表示。
    射线:直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。一条射线可以用端点和射线上另一点来表示。
    注意:
    ①线和射线无长度,线段有长度。
    ②直线无端点,射线有一个端点,线段有两个端点。

  • 直线、射线、线段的基本性质:

    图形 表示法 端点 延长线 能否度量 基本性质
    直线 没有端点的一条线 一条线,
    不要端点
    可以向两边无限延长 两端都没有端点,可以无限延长,不可测量的线
    射线 只有一个端点的一条线 一条线,
    只有一边有端点
    一个 可以向一边无限延长 一端有端点,可以向一边无限延长,不可测量的线
    线段 两边都有端点的一条线 一条线,两边都有端点 两个 不能延长 两端都有端点,不能延长,可测量的线

  • 直线、射线、线段区别:
    直线没有端点,2边可无限延长;
    射线有1端有端点,另一端可无限延长;
    线段,有2个端点,而2个端点间的距离就是这条线段的长度。

    直线除了“直”这个特点外,还有一个很重要的特点,那就是它可以向两个方向无限延伸,永远没有尽头,所以,直线是不可能度量的。因此,在画直线时,要画出没有端点的直线,表示可以无限延伸;
    射线只有一个端点,可以向一个方向无限延伸,也永远没有尽头。所以,射线也是不可能度量的。直线上任意的一点可以把这条直线分成两条方向相反的射线,因此,射线是直线的一部分。虽然射线是直线的一部分,但由于它们都是不能度量的,所以,它们之间没有长短可以比较;
    线段有两个端点,它有一定的长度,可以度量。线段也是直线的一部分。

  • 各种图形表示方法:
    直线:一个小写字母或两个大写字母,但前面必须加“直线”两字,如:直线l,直线m;直线AB,直线CD。
    例:直线l;直线AB。
    射线:一个小写字母或端点的大写字母。和射线上的一个大写字母,前面必须加“射线”两字。如:射线a;射线OA。
    例:射线AB。
    线段:用表示端点的大写字母表示,如线段AB;用一个小写字母表示,如线段a。
    例:线段AB;线段a 。

考点名称:角平分线的定义

  • 角的平分线的定义
    一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

  • 角平分线的性质:
    角平分线上的点,到角两边的距离相等
    定理:
    角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    逆定理:
    到角两边的距离相等的点在角平分线上。

考点名称:垂直的判定与性质

  • 垂线的定义:
    两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
    直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
    垂线的性质:
    性质1:过一点有且只有一条直线与已知直线垂直。
    性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
    垂直的判定:垂线的定义。

考点名称:相交线

  • 相交线:
    当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。

  • 相交线性质:

    ∠1和∠2有一条公共边OC,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。
    ∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
    ∠1与∠2互补,∠3与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,∠2=∠4.这样,
    我们得到了对顶角的性质:对顶角相等。

  • 垂线:
    垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
    经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
    过一点有且只有一条直线与已知直线垂直。
    连接直线外一点与直线上各点的所有线段中,垂线段最短.
    简单说成:垂线段最短。
    直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。



http://www.00-edu.com/ks/shuxue/2/151/2020-01-07/1941801.html十二生肖
十二星座