零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 平行线的性质,平行线的公理 > 正文 返回 打印

若一个圆经过梯形ABCD的四个顶点,则这个梯形是______梯形.-数学

[db:作者]  2020-01-06 00:00:00  互联网

题文

若一个圆经过梯形ABCD的四个顶点,则这个梯形是______梯形.
题型:填空题  难度:中档

答案



∵圆经过梯形ABCD的四个顶点,
∴∠A+∠C=180°,
∵AD∥BC,
∴∠A+∠B=180°,
∴∠B=∠C,
∴梯形ABCD是等腰梯形.
故答案为:等腰.

据专家权威分析,试题“若一个圆经过梯形ABCD的四个顶点,则这个梯形是______梯形.-数学..”主要考查你对  平行线的性质,平行线的公理,梯形,梯形的中位线,点与圆的位置关系  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理梯形,梯形的中位线点与圆的位置关系

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

考点名称:梯形,梯形的中位线

  • 梯形的定义:
    一组对边平行,另一组对边不平行的四边形叫做梯形。
    梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底,梯形中不平行的两边叫做梯形的腰,梯形的两底的距离叫做梯形的高。
    梯形的中位线:
    连结梯形两腰的中点的线段。 

  • 梯形性质:
    ①梯形的上下两底平行;
    ②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
    ③等腰梯形对角线相等。

    梯形判定:
    1.一组对边平行,另一组对边不平行的四边形是梯形。
    2.一组对边平行且不相等的四边形是梯形。

    梯形中位线定理:
    梯形中位线平行于两底,并且等于两底和的一半。
    梯形中位线×高=(上底+下底)×高=梯形面积
    梯形中位线到上下底的距离相等
    中位线长度=(上底+下底)

    梯形的周长与面积
    梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。
    等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。
    梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。
    变形1:h=2s÷(a+b);
    变形2:a=2s÷h-b;
    变形3:b=2s÷h-a。
    另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。
    对角线互相垂直的梯形面积为:对角线×对角线÷2。

  • 梯形的分类


    等腰梯形:两腰相等的梯形。
    直角梯形:有一个角是直角的梯形。

    等腰梯形的性质:
    (1)等腰梯形的同一底边上的两个角相等。
    (2)等腰梯形的对角线相等。
    (3)等腰梯形是轴对称图形。

    等腰梯形的判定:
    (1)定义:两腰相等的梯形是等腰梯形
    (2)定理:在同一底上的两个角相等的梯形是等腰梯形
    (3)对角线相等的梯形是等腰梯形。

考点名称:点与圆的位置关系

  • 点与圆的位置关系:
    由圆的定义可知,点与圆的位置关系有三种:点在圆上,点在圆内,点在圆外。
    点与圆的位置关系转化为点到圆心的距离与半径间的数量关系:
    设⊙O的半径是r,点P到圆心O的距离为d,则有:
    d<r点P在⊙O内;
    d=r点P在⊙O上;
    d>r点P在⊙O外。



http://www.00-edu.com/ks/shuxue/2/151/2020-01-07/1941842.html十二生肖
十二星座