零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 平行线的性质,平行线的公理 > 正文 返回 打印

如图,已知AB∥DE,AB=DE,AF=DC,在图中有______对全等三角形.-数学

[db:作者]  2020-01-06 00:00:00  零零社区

题文

如图,已知AB∥DE,AB=DE,AF=DC,在图中有______对全等三角形.

题型:填空题  难度:中档

答案

∵AB∥DE,
∴∠A=∠D,
在△ABF和△DEC中,

AF=CD
∠A=∠D
AB=DE

∴△ABF≌△DEC,
∵AF=CD,
∴AC=DF,
又∵有∠A=∠D,AB=ED,
∴△ABC≌△DEF,
∴∠BCA=∠EFC,EF=CB,
又∵FC=FC,
∴△EFC≌△BCF,
∴有3对全等的三角形.
故答案为:3.

据专家权威分析,试题“如图,已知AB∥DE,AB=DE,AF=DC,在图中有______对全等三角形.-数..”主要考查你对  平行线的性质,平行线的公理,三角形全等的判定  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理三角形全等的判定

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

考点名称:三角形全等的判定

  • 三角形全等判定定理:
    1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了
    三角形具有稳定性的原因。
    2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
    3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
    4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
    5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以:SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
    注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

  • 三角形全等的判定公理及推论:
    (1)“边角边”简称“SAS”
    (2)“角边角”简称“ASA”
    (3)“边边边”简称“SSS”
    (4)“角角边”简称“AAS”
    注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

    要验证全等三角形,不需验证所有边及所有角也对应地相同。
    以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:
    ①S.S.S. (边、边、边):
    各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。
    ②S.A.S. (边、角、边):
    各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。
    ③A.S.A. (角、边、角):
    各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。
    ④A.A.S. (角、角、边):
    各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。
    ⑤R.H.S. / H.L. (直角、斜边、边):
    各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。 但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:
    ⑥A.A.A. (角、角、角):
    各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。
    ⑦A.S.S. (角、边、边):
    各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。
    但若是直角三角形的话,应以R.H.S.来判定。

  • 解题技巧:
    一般来说考试中线段和角相等需要证明全等。
    因此我们可以来采取逆思维的方式。
    来想要证全等,则需要什么条件:要证某某边等于某某边,那么首先要证明含有那两个边的三角形全等。
    然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等。
    有时还需要画辅助线帮助解题。常用的辅助线有:倍长中线,截长补短等。
    分析完毕以后要注意书写格式,在全等三角形中,如果格式不写好那么就容易出现看漏的现象。



http://www.00-edu.com/ks/shuxue/2/151/2020-01-07/1941999.html十二生肖
十二星座