零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 平行线的性质,平行线的公理 > 正文 返回 打印

如图1,已知三角形ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一个平角,依辅助线不同而得多种证法.证法1:如图2,延长BC到D,过点-数学

[db:作者]  2020-01-06 00:00:00  互联网

题文

如图1,已知三角形ABC,求证:∠A+∠B+∠C=180°.
分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一个平角,依辅助线不同而得多种证法.



证法1:如图2,延长BC到D,过点C画CE∥BA
∵BA∥CE(作图所知)
∴∠B=______(两直线平行,同位角相等),
∠A=∠2  (______ ).
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义)
∴∠A+∠B+∠ACB=180°(等量代换)
(1)请补全上述证明过程.
(2)如图3,过线段BC上任一点F(点B、C除外),画FH∥AC,FG∥AB,这种添加辅助线的方法也能证明∠A+∠B+∠C=180°.请完成说理过程.
证法2:如图3,过线段BC上任一点F(点B、C除外),画FH∥AC,FG∥AB.
题型:解答题  难度:中档

答案



(1)证法1:如图2,延长BC到D,过点C画CE∥BA
∵BA∥CE(作图所知)
∴∠B=∠1(两直线平行,同位角相等),
∠A=∠2(两直线平行,内错角相等).
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义)
∴∠A+∠B+∠ACB=180°(等量代换).
故答案为:∠1;两直线平行,内错角相等;

(2)证法2:如图3,过线段BC上任一点F(点B、C除外),画FH∥AC,FG∥AB,
∴∠1=∠B,∠3=∠C,∠4=∠A,
∵FG∥AB,
∴∠2=∠4,
∴∠2=∠A,
∵∠1+∠2+∠3=180°,
∴∠A+∠B+∠C=180°.

据专家权威分析,试题“如图1,已知三角形ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,..”主要考查你对  平行线的性质,平行线的公理  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。



http://www.00-edu.com/ks/shuxue/2/151/2020-01-07/1942048.html十二生肖
十二星座