首页 > 考试 > 数学 > 初中数学 > 平行线的性质,平行线的公理 > 正文 | 返回 打印 |
|
题型:解答题 难度:中档
答案
(1)∠BCD+∠BDC=∠MAB. 证明:∵MN∥HP, ∴∠MAB=∠ABP. 又∵∠ABP=∠BCD+∠BDC, ∴∠BCD+∠BDC=∠MAB; (2)如图,点D可移动到点D1处, 猜想:∠BCD+∠BDC+∠MAB=180°. |
据专家权威分析,试题“如图:MN∥HP,直线L交MN于A,交HP于B,点C为线段AB上一定点,点D为..”主要考查你对 平行线的性质,平行线的公理,三角形的外角性质 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理三角形的外角性质
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。
平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
考点名称:三角形的外角性质
三角形的外角特征:
①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
性质:
①. 三角形的外角与它相邻的内角互补。
②. 三角形的一个外角等于和它不相邻的两个内角的和。
③. 三角形的一个外角大于任何一个和它不相邻的内角。
④. 三角形的外角和等于360°。
设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。
定理:三角形的一个外角等于不相邻的两个内角和。
定理:三角形的三个内角和为180度。
http://www.00-edu.com/ks/shuxue/2/151/2020-01-07/1942107.html十二生肖十二星座