零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 平行线的性质,平行线的公理 > 正文 返回 打印

完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD求证:∠EGF=90°证明:∵HG∥AB(已知)∴∠1=∠3______又∵HG∥CD(已知)∴∠2=∠4∵AB∥CD(已知)∴∠BEF+______=180°______又∵EG-数学

[db:作者]  2020-01-06 00:00:00  互联网

题文

完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD
求证:∠EGF=90°


证明:∵HG∥AB(已知)
∴∠1=∠3______
又∵HG∥CD(已知)
∴∠2=∠4
∵AB∥CD(已知)
∴∠BEF+______=180°______
又∵EG平分∠BEF(已知)
∴∠1=
1
2
∠______
又∵FG平分∠EFD(已知)
∴∠2=
1
2
∠______
∴∠1+∠2=
1
2
(______)
∴∠1+∠2=90°
∴∠3+∠4=90°______即∠EGF=90°.
题型:解答题  难度:中档

答案

∵HG∥AB(已知)
∴∠1=∠3 (两直线平行、内错角相等)
又∵HG∥CD(已知)
∴∠2=∠4
∵AB∥CD(已知)
∴∠BEF+∠EFD=180°(两直线平行、同旁内角互补)
又∵EG平分∠BEF,FG平分∠EFD
∴∠1=
1
2
∠BEF,
∠2=
1
2
∠EFD,
∴∠1+∠2=
1
2
(∠BEF+∠EFD),
∴∠1+∠2=90°
∴∠3+∠4=90° (等量代换),
即∠EGF=90°.
故答案分别为:两直线平行、内错角相等,∠EFD,两直线平行、同旁内角互补,∠BEF,∠EFD,∠BEF+∠EFD,等量代换.

据专家权威分析,试题“完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD求..”主要考查你对  平行线的性质,平行线的公理  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。



http://www.00-edu.com/ks/shuxue/2/151/2020-01-07/1942218.html十二生肖
十二星座