首页 > 考试 > 数学 > 初中数学 > 平行线的性质,平行线的公理 > 正文 | 返回 打印 |
|
题型:单选题 难度:中档
答案
A、∵∠1=50°,∴∠1的邻补角是130°,∵EF∥GH,∴∠2=130°; B、∵AB∥CD,∴∠1的同位角是50度.∵EF∥GH,∴∠3=50°; C、根据对顶角相等,得∠4=∠3=50°; D、∵EF∥GH,∴∠5=∠4=50°; 故选C. |
据专家权威分析,试题“如图,AB∥CD,EF∥GH,且∠1=50°,下列结论错误的是()A.∠2=130°B.∠..”主要考查你对 平行线的性质,平行线的公理,相交线 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理相交线
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。
平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
考点名称:相交线
相交线性质:
∠1和∠2有一条公共边OC,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。
∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
∠1与∠2互补,∠3与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,∠2=∠4.这样,
我们得到了对顶角的性质:对顶角相等。
垂线:
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短.
简单说成:垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
http://www.00-edu.com/ks/shuxue/2/151/2020-01-07/1942416.html十二生肖十二星座