题文
答案
据专家权威分析,试题“已知AB、CD是⊙O的两条平行弦,⊙O的直径是10cm,弦AB=8cm,CD=6cm..”主要考查你对 平行线的性质,平行线的公理,勾股定理,垂直于直径的弦 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理勾股定理垂直于直径的弦
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。推论(平行线的传递性):平行同一直线的两直线平行。∵a∥c,c ∥b∴a∥b。
平行线的性质:1. 两条平行被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。2. 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。3 . 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
考点名称:勾股定理
考点名称:垂直于直径的弦
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 注:(1)定理中的直径过圆心即可,可以是直径、半径、过圆心的直线或线段; (2)此定理是证明等线段、等角、垂直的主要依据,同时也为圆的有关计算提供了方法和依据。 垂径定理的推论: 推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧推论四:在同圆或者等圆中,两条平行弦所夹的弧相等(证明时的理论依据就是上面的五条定理)但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:
一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论1.平分弦所对的优弧2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)3.平分弦 (不是直径)4.垂直于弦5.经过圆心