题文
如图,在梯形ABCD 中,AD∥ BC,∠ABC=90°,对角线BD、AC相交于点O,下列条件中不能判断对角线互相垂直的是
答案
据专家权威分析,试题“如图,在梯形ABCD中,AD∥BC,∠ABC=90°,对角线BD、AC相交于点O,..”主要考查你对 垂直的判定与性质,梯形,梯形的中位线 等考点的理解。关于这些考点的“档案”如下:
垂直的判定与性质梯形,梯形的中位线
考点名称:垂直的判定与性质
考点名称:梯形,梯形的中位线
梯形性质:①梯形的上下两底平行;②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。③等腰梯形对角线相等。
梯形判定:1.一组对边平行,另一组对边不平行的四边形是梯形。2.一组对边平行且不相等的四边形是梯形。梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。 梯形中位线×高=(上底+下底)×高=梯形面积梯形中位线到上下底的距离相等中位线长度=(上底+下底)梯形的周长与面积:梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。变形1:h=2s÷(a+b);变形2:a=2s÷h-b;变形3:b=2s÷h-a。另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。对角线互相垂直的梯形面积为:对角线×对角线÷2。
梯形的分类:等腰梯形:两腰相等的梯形。 直角梯形:有一个角是直角的梯形。 等腰梯形的性质:(1)等腰梯形的同一底边上的两个角相等。 (2)等腰梯形的对角线相等。 (3)等腰梯形是轴对称图形。 等腰梯形的判定:(1)定义:两腰相等的梯形是等腰梯形 (2)定理:在同一底上的两个角相等的梯形是等腰梯形 (3)对角线相等的梯形是等腰梯形。